

MOUNTAIN VIEW ENGINEERING, INC.

Structural Engineering • Consulting • Design

345 North Main Street, Suite A • Brigham City, Utah 84302 • Phone (435) 734-9700 • Fax (435) 734-9519 • mvengr.net

September 15, 2023

RE: Clay Hockel – C&B Holdings Hayden, Colorado

To Whom It May Concern:

Our firm prepared the foundation design and details for the referenced project. The original foundation calculations dated July 31, 2023 included calculations for the anchor rods and with its anchor rod reinforcement. Please see pages 9 & 10 of the original foundation calculations, which we have attached, for anchor rod calculations for the worst case 1" diameter bolts (Sidewall) and 5/8" diameter bolts (Endwall and Corners). The anchor rod calculations are per ACI 318-14.

Please contact me if you have any questions.

Respectfully,

Jed Larsen, P.E. Mountain View Engineering, Inc.

65'x70' Metal Building MVE #23-0706

CLAY HOCKEL C&B HOLDINGS Hayden, Colorado

Metal Building Supplied By:

METAL BUILDING OUTLET CORP. 7651 Shaffer Pkwy, Ste. A Littleton, CO 80127

JUL 31 2023

Foundation Design by:

DESIGN CRITERIA:

Ground Snow Load	80	psf
Roof Snow Load	60	psf
Roof Live Load	20	psf
Roof Collateral Load	1	psf

Code:	2018 IBC				

S _{DS}	0.409	Wind Speed	115	mph
Seismic Design Category	C	 Exposure	С	-
Site Class	D	Importance Factor	1.0	-

Other Loads:

Soil Bearing	3500	psf (Per Geotech)
Minimum Bearing	1500	psf (Per Geotech)
Frost Depth	48	inches (Per Geotech
Passive Pressure	250	psf/ft (Assumed)
Coefficient of Friction	0.25	(Assumed)

Notes:

Reactions per METAL BUILDING OUTLET CORP. drawings.

The foundation has been designed, and the site soils should be prepared for the foundation, in accordance with the recommendations in the geotechnical investigation report by:

Erika K. Hill, P.E., P.G. of NWCC, Inc. 2580 Copper Ridge Drive, Steamboat Springs, CO 80487 Phone: (970) 879-7888 Job Number: 22-12817

Concrete and Reinforcement:

Concrete Strength 3000 P.S.I. for Foundations 3500 P.S.I. for Slabs 2500 P.S.I. Used for design, no special inspection required.

Rebar - ASTM A615 grade 60

Job: MVE #23-0706 METAL BUILDING OUTLET CORP.

Sidewall Footings

(Lines 2 & 3 / Grids A & E)

53.7	kips
30.3	kips
9.3	_ kips
	30.3

Use 5.0 ft. x 5.0 ft. x 30 inch deep footing

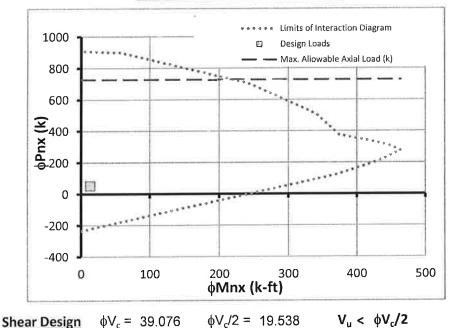
REVIEWED

2

07/31/23

BLC

Horizontal Force Use rebar a	ension			g to resist horizontal force at the co		
Top of Pier to Center of Ties = Tensile Strength of Rebar =		18 24	in kai	Number of Ties =	4	ties
· ·			ksi	Tie Size =	#6	rebar
Area Required =		1.263	in^2	Use (4) #	o tensior	n ties.
<u>Neights</u>				Passive Soil Resistance		
Weight of Pier =		1.3	6 kips	Wall Length for Passive Res. =	1.5	ft
Weight of Soil Above Footing =		3.5	i8 kips	Ftg. Width for Passive Res. =	5	ft
Weight of Spot Footing =		9.0	6 kips	Passive Earth Pressure =	200	psf/ft
Weight of Continuous Wall =		0.0	0 kips	Passive Res. (Spot Footing) =	8.13	kips
Weight of Continuous Ftg. =		0.0	0 kips	Passive Res. (Wall & Pier) =	0.30	kips
			•	Passive Res. (Cont. Ftg.) =	0.00	kips
Use Passive Res. to Resist Mome	nt?	YE	S	Total Passive Resistance =	8.43	kips
Check Soil Bearing				Allowable Bearing Pressure =	3500	psf
Moment Arm =		1.5	ft	Top of Wall to Grade =	6	in
P (total) =		53.70		OS Conc. to CL A.R. =	16.25	în
Overturning Moment =		45.45	•	Pier Width =	18	in
OTM Eccentricity =		10.2	inches	Pier Depth (wall included) =	30	în
Footing Offset =		3.25	inches	Pier Height =	30	în
Offset Resisting Moment =		- 14.54	kip*ft	Wall Thickness =	8	in
Passive Resisting Moment =		- 7.72	kip*ft	Wall Height =	48	in
Net Eccentricity =		5.2	inches	Footing Width =	16	in
3	s OK	0.12		Footing Depth =	8	in
Minimum Bearing Pressure = plift Weight of Footing and Pier =			psf OK 12 kips	Wall Length used for Uplift =	23	ft
Weight of Soil Above Footing =		3.5		Cont. Ftg. Length for Uplift =	23.0	ft
Weight of Cont. Wall & Footing = Total =		10.0	83 kips 84 kips	Factor of Safety =	2.65	> 1.0 Of
heck Footing Flexure (Reinforcing	a in Dii	rection o	f Horizontal	Force)		
q (min.) =	1035	psf	Rebar d'			
OS Footing Edge from Wall =	1.417		Rebar d :			
q (at face of wall) =	2630		Rebar fy			
Moment in Footing (Mu, ULT) =	20.74	•	Concrete	•		
As (req'd by calc.) =	0.174			As (min) = 3.240 in^2		
pposite Direction Reinforcing						
pposite Direction Reinfording						
			Use (6) #5 bars each way at top c	of footing	and
Min. Steel Ratio = 0.0018 As per ACI 7.12				6) #5 bars each way at botto	m of foo	



Concrete Column Analysis (ACI 318)

For X-Axis Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing

Input			Column Geometry				
f _c ' =	2500	psi	Bar Size =	5	Total # of Bars	14	b
f _γ =	60	ksi	# of Bars b Face	4	Tie Size =	4	
d' = 🛛 🕯	2.375	in	# of Bars h Face	5			\bullet \bullet \bullet \uparrow
b =	18	in					
h =	30	in	Placement of Reinf	orceme	ent Steel		
φ =	0.65			\underline{d}_i	Asi		x h
Loading	3		Edge Layer (d ₁)	27.63	1.24		
P _{ux} =	51.6	kips	Interior Layer (d ₂)	21.31	0.62		di
M _{ux} =	13.2	kip-ft	Interior Layer (d ₃)	15.00	0.62		
V _{ux} =	3.3	kips	Interior Layer (d ₄)	8.69	0.62		
			Interior Layer (d ₅)	0.00	0.00		Y ¹
			Edge Layer (d ₆)	2.38	1.24		Typical Member Section

X-AXIS INTERACTION DIAGRAM

DESIGN LOADS FALL WITHIN THE LIMITS OF THE INTERACTION DIAGRAM, THEREFORE, USE (14) # 5 VERTICAL BARS IN COLUMN.

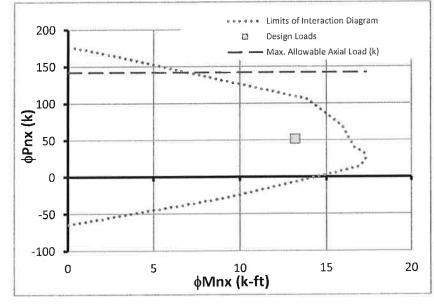
If $V_u < \phi V_c/2$ then Vertical Space	If $V_u > \phi V_c/2$ then vertical spacing of ties			
shall not exceed the least of:		shall not exceed the least of:		
16 x (longitudal bar diameters)	=	10	in	$s max = A_v f_v / (0.75 v (f_c) b) = 35.556$ in
48 x (tie bar diameter)	=	24	in	$s max = A_v f_v / (50b) = 26.667$ in
Least dimension of column	Ξ	18	in	s max = d/2 ≤ 24 in = 13.813 in

USE # 4 TIES AT 8.00 INCHES ON CENTER WITH (3) IN THE TOP SIX INCHES OF PIER.

Job: MVE #23-0706 METAL BUILDING OUTLET CORP. Subject: CLAY HOCKEL C&B HOLDINGS

Endwall Footings (Line 1 / Grids B, D, & E and Line 4 / Grids B, C, & E)

		з D , D,				inus	D, 0	, ~ _ /			
P _{D+L} = 25.3 kips											
$F_{H} = 2.9$ kips				Use	3.5 ft	х З	3.5 ft	. x 12 ind	ch de	ept	ooting
Uplift = 5.9 kips			=								
Check Soil Bearing					Allowab	le Be	aring I	Pressure =	3	500	psf
Moment Arm =		5	ft		Top of \					6	in
P (total) =		25.30	kips		OS Con		CL A.I	₹. =		4	in
Overturning Moment =		14.5	kip*ft		Pier Wie					12	in
OTM Eccentricity =		6.9	inches					luded) =		8	in
Footing Offset =		0	inches		Pier He	-				48	in
Offset Resisting Moment =	3	0.00	kip*ft		Wall Th					8	in
Passive Resisting Moment =	3	4.34	kip*ft		Wall He	-				48	in in
Net Eccentricity =		4.8	inches		Footing					16	in in
B/6 = 7 inche	s OK				Footing	Dept	n –			8	in
Bearing Pressure, q (max.) =		3487	psf (ж				Offset for	otina	0 in	ches.
Minimum Bearing Pressure =		1783)K							
Sliding Resistance		1705	por c								
Coefficient of Friction =		0.2	5		Wall Le	nath f	for Slic	tina =	2	1.0	ft
Weight of Pier =		0.3				-		ssive Res. =		1.0	ft
Weight of Soil Above Footing =		3.2	•			-		ng/Passive =		4.0	ft
Weight of Spot Footing =		1.7			Passive			-		00	psf/ft
Weight of Continuous Wall =		1.1	•					Footing) =		.80	kips
Weight of Continuous Ftg. =		0.0	•					& Pier) =	1	.40	kips
Sliding Resistance from Footing &	Pier =	0.5	4 kips		Passive	Res.	(Cont	. Ftg.) =	0	.26	kips
Sliding Resistance from Soil above	e Ftg. =	0.8	1 kips		Total Pa	assiv	e Res	istance =	4	.46	kips
Sliding Resistance from Vertical Lo		6.3						stance =		.98	kips
Sliding Resistance from Wall & Ftg	g. =	0.3	1 kips		Factor	of Sa	fety =		4	.29	> 1.0 OK
<u>Uplift</u> Weight of Footing and Pier =		2.1	6 kips			nath i	usod f	or Uplift =	1	4.5	ft
Weight of Soil Above Footing =		3.2	•			-		or Uplift =			ft
Weight of Cont. Wall & Footing =		6.6			00111.11	ig. Lo	ngun it	of Opint –	1	7.0	IL III
Total =		- 12.0			Factor	of Sa	fety =		2	.04	> 1.0 OK
Check Footing Flexure (Reinforcing					orce)						
q (min.) =	644	psf		ar d' =			3.5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Optio		
OS Footing Edge from Wall =	1.417	ft		ard=			8.5	in		#4 b	
q (at face of wall) =	2336	psf		ar fy =			60000	psi		#5 b	
Moment in Footing (Mu, ULT) =	15.55	k*ft		crete f			2500	psi	3 ;	#6 b	
As (req'd by calc.) =	0.411	Innz	ACI	7.1Z A	s (min) =	= (0.907	in^2			
Opposite Direction Reinforcing	Opti	ons									
	5	#4 bars									
Min. Steel Ratio = 0.0018	3	#5 bars	ι	Jse (5) #4 ba	irs in	direc	ction of ho	rizont	tal f	orce
As per ACI 7.12	3	#6 bars	a	nd us	e (5) #4	4 bai	rs in t	the opposi	ite dir	ecti	on.
			=								
Check Footing Shear					ier Desi	1022.11.2	_				
Shear in Footing (Vu, ULT) =	21.95			0.000	I =	40	kips	**See pi		cula	tion
Required Thickness =	10.47	in Ol	۲		1 =	19	kip*f	t on page	e 5 .		
				Vu	-	5	kips				



Concrete Column Analysis (ACI 318)

For X-Axis Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing

Input			Column Geometry								
f _c ' = 2	2500	psi	Bar Size =	4	Total # of Bars	6		4	b	>	
f _y =	60	ksi	# of Bars b Face	3	Tie Size =	3		r	ł		-
d' =	2	in	# of Bars h Face	2				•	•	•	
b =	12	in							1		
h =	8	in	Placement of Reinf	orcem	ent Steel		$\overline{\Lambda}$	•	1	•	
φ = (0.65			<u>d</u> i	A _{st}		_X				h
Loading	K		Edge Layer (d ₁)	6.00	0.60		di	•	i	•	
P _{ux} =	51.6	kips	Interior Layer (d ₂)	0.00	0.00		ui				
M _{ux} = -	13.2	kip-ft	Interior Layer (d ₃)	0.00	0.00				1		
V _{ux} =	3.3	kips	Interior Layer (d ₄)	0.00	0.00		\checkmark		Ţ		-
			Interior Layer (d ₅)	0.00	0.00				Ύ		
			Edge Layer (d ₆)	2.00	0.60			Typical	Membe	er Section	

X-AXIS INTERACTION DIAGRAM

DESIGN LOADS FALL WITHIN THE LIMITS OF THE INTERACTION DIAGRAM, THEREFORE, USE (6) # 4 VERTICAL BARS IN COLUMN.

Shear	Design	φ

 $\phi V_c = 6.8513 \qquad \phi V_c / 2 = 3.4256$

 $V_u < \phi V_c/2$

If $V_u < \phi V_c/2$ then Vertical Spacing of ties

shall not exceed the least of:			
16 x (longitudal bar diameters)	=	8	in
48 x (tie bar diameter)	=	18	in
Least dimension of column	=	8	in

If $V_u > \phi V_c/2$ then vertical spacing of ties							
shall not exceed the least of:							
s max =	$A_v f_y / (0.75 v (f_c')b) =$	29.333 in					

	v			
s max =	A _v f _y /(50b)	=	22	in
s max =	d/2 ≤ 24 in	=	3	in

USE # 3 TIES AT 8.00 INCHES ON CENTER WITH (3) IN THE TOP FIVE INCHES OF PIER.

Job: MVE #23-0706 METAL BUILDING OUTLET CORP. Subject: CLAY HOCKEL C&B HOLDINGS

Corner Footings (Lines 1 & 4 / Grids A & E)

 $P_{D+L} = 9.3$ kips Uplift = 4.3 kips

Check Soil Bearing

Allowable Pressure =	3500	psf
Minimum Pressure =	1500	psf
B req'd	= 1.63	ft

Use 2.5 $ft^2 x$ 12 inch deep footing reinforced with (4) #4 bars each way.

q = 3355 psf OK q_{min} = 1867 psf OK

<u>Uplift</u>		
Design uplift =	4.3	kips
Slab Thickness =	0	inches
Depth to top of Ftg. =	42	inches
(EW) OS Conc. to CL Footing =	4	inches
(SW) OS Conc. to CL Footing =	9.8	inches
(EW) Length of Wall for Uplift =	7.5	feet
(SW) Length of Wall for Uplift =		
Wall Thickness =	8	inches

Weight of Footing and Soil = 3.13 kips Weight of Concrete Slab = 0.00 kips Weight of Foundation Wall & Ftg. = 8.54 kips Total = 11.67 kips

Factor of Safety = 2.71 > 1.0 OK

kips

0.6

2.1 kips

 $P_{D+L} =$

F_H =

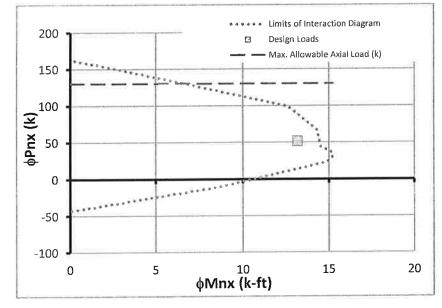
Job: <u>MVE #23-0706 METAL BUILDING OUTLET CORP.</u> c Subject: <u>CLAY HOCKEL C&B HOLDINGS</u>

Endwall Footings

(Lines 2 & 3 / Grid D.1)

Use 2.5 ft. x 2.5 ft. x 12 inch deep footing

Uplift = <u>0.0</u> kips								
Check Soil Bearing						Allowable Bearing Pressure =	3500	psf
Moment Arm =			1	ft		Top of Wall to Grade =	6	in
P (total) =			14.		ips	OS Conc. to CL A.R. =	4	in
Overturning Moment =			2.05		ip*ft	Pier Width =	12	in
OTM Eccentricity =			1.7		ches	Pier Depth (wall included) =	8	in
Footing Offset =			0		ches	Pier Height =	48	in
Offset Resisting Momer	nt =		0.0		ip*ft	Wall Thickness =	8	in
Passive Resisting Mom			- 0.0		, ip*ft	Wall Height =	48	in
Net Eccentricity =			1.7		ches	Footing Width =	16	in
•	5 inche	s OK				Footing Depth =	8	in
Bearing Pressure, q (r	nax.) =		315	9 p	sf OK	Offset foo	ting 0 in	ches.
Minimum Bearing Pre			315	•	sf OK			
Sliding Resistance								
Coefficient of Friction =			(0.25		Wall Length for Sliding =	2.0	ft
Weight of Pier =			(0.40	kips	Wall Length for Passive Res. =	2.0	ft
Weight of Soil Above Fo	ooting =			1.51	kips	Ftg. Width for Sliding/Passive =	2.0	ft
Weight of Spot Footing	=		().94	kips	Passive Earth Pressure =	200	psf/ft
Weight of Continuous V	Vall =		().39	kips	Passive Res. (Spot Footing) =	2.00	kips
Weight of Continuous F	tg. =		-	0.07	kips	Passive Res. (Wall & Pier) =	0.70	kips
Sliding Resistance from	Footing &	Pier =	(0.33	kips	Passive Res. (Cont. Ftg.) =	-0.26	kips
Sliding Resistance from	Soil above	∋ Ftg. =	(0.38	kips	Total Passive Resistance =	2.44	kips
Sliding Resistance from			(0.16	kips	Total Sliding Resistance =	0.95	kips
Sliding Resistance from	Wall & Fto	j. =	(0.08	kips	Factor of Safety =	1.65	> 1.0 OK
Uplift								
Weight of Footing and F	Dier =			1.34	kips	Wall Length used for Uplift =	23.33	ft
Weight of Soil Above Fo				1.51	kips	Cont. Ftg. Length for Uplift =	23.33	
Weight of Cont. Wall &	-				kips	cont. r.g. Longarior opint	20.00	
Total =	r ooting –				kips	Factor of Safety =	na	-
Check Footing Flexure (F	Poinforcin	a in Dir	oction	of F	lorizont		197	
q (min.) =	termorchi	1578			Rebar			
OS Footing Edge from \	Nall =	0.917			Rebar			
q (at face of wall) =		2579	psf		Rebar			
Moment in Footing (Mu,	(JI T) =	4.58	k*ft		Concre			
- ,	021)	0.120				$2 \text{ As (min)} = 0.648 \text{ in}^2$		
As (req'd by calc.) =								
As (regid by calc.) =	orcing							
	orcing					(4) #4 have in direction of her		
						(4) #4 bars in direction of hor		
Opposite Direction Reinf						use (4) #4 bars in the opposit		
Dpposite Direction Reinf Min. Steel Ratio = 0.001 As per ACI 7.12					and	use (4) #4 bars in the opposit		
Opposite Direction Reinf Min. Steel Ratio = 0.001 As per ACI 7.12 Check Footing Shear	8	9.99	kips		and	use (4) #4 bars in the opposit	<u>e directi</u>	<u>on.</u>
Dpposite Direction Reinf Min. Steel Ratio = 0.001 As per ACI 7.12	8	9.99 7.94	kips in	ок	and	use (4) #4 bars in the opposit	<u>e directi</u> r calcula	<u>on.</u>



Concrete Column Analysis (ACI 318)

For X-Axis Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing

Input			Column Geometry				
f _c ' = 2	500	psi	Bar Size =	4	Total # of Bars	4	b b
f _v =	60	ksi	# of Bars b Face	2	Tie Size =	3	
d' =	2	in	# of Bars h Face	2			• • •
b =	12	in					1
h =	8	in	Placement of Reinf	orcem	nent Steel		<u>∧</u> • •
φ = 0).65			<u>d</u> i	Ast		X h
Loading			Edge Layer (d ₁)	6.00	0.40		
$P_{ux} = 5$	51.6	kips	Interior Layer (d ₂)	0.00	0.00		di
M _{ux} = 1	3.2	kip-ft	Interior Layer (d ₃)	0.00	0.00		
$V_{ux} = 3$	3.3	kips	Interior Layer (d ₄)	0.00	0.00		
			Interior Layer (d ₅)	0.00	0.00		Y ⁱ
			Edge Layer (d ₆)	2.00	0.40		Typical Member Section

X-AXIS INTERACTION DIAGRAM

DESIGN LOADS FALL WITHIN THE LIMITS OF THE INTERACTION DIAGRAM, THEREFORE, USE (4) # 4 VERTICAL BARS IN COLUMN.

Shear Design

 $\phi V_c = 6.8513$ $\phi V_c/2 = 3.4256$

 $V_u < \phi V_c/2$

If $V_u < \phi V_c/2$ then Vertical Spacing of ties				If $V_u > \phi V_c/2$ then vertical spacing of ties				
shall not exceed the least of:	shall not exceed the least of:							
16 x (longitudal bar diameters)	=	8	in	s max =	A _v f _y /(0.75√(f _c ')b) =	29.333	in i
48 x (tie bar diameter)	=	18	in	s max =	A _v f _y /(50b)	=	22	in
Least dimension of column	=	8	in	s max =	d/2 ≤ 24 in	=	3	in

USE # 3 TIES AT 8.00 INCHES ON CENTER WITH (3) IN THE TOP FIVE INCHES OF PIER.

Worst Case: Sidewall Anchors (Tension and Shear)

ANCHOR ROD GROUP CHECK (per ACI 318-14 Chapter 17, headed anchors)

Tensile Force on Anchors $(N_U) =$	14.88	kips
Shear Force on Anchors $(V_U) =$	48.48	kips
Seismic Design Category =	С	
Number of Anchors (n) =	6	
Number of Anchors in Tension $(n) =$	6	
Anchor Diameter $(d_a) = 1$ in $A_{SE} =$	0.606	in^2
Anchor Spacing Perpendicular to Load $(s_1) =$	4	in
Anchor Spacing Parallel to Load $(s_2) =$	4	in
Spacing of outer Anchors $(s_0) =$	8	in
Embedment Depth $(h_{EF}) =$	22	in
Yield Strength of Anchors (Fy) =	36	ksi
Tensile Strength of Anchors $(F_{uta}) =$	58	ksi
Edge Distance in Load Direction $(c_{a1}) =$	12.25	in
Edge Distance Perpendicular to Load $(c_{a2}) =$	7	in
Concrete Strength $(f_C) =$	2500	psi
Axial Eccentricity $(e'_N) =$	0	in
Shear Eccentricity $(e'_V) =$	0	in

Steel Strength of Anchors in Tension (17.4.1.2)

N_{sa}		$= nA_{SE}F_{u}$	ita	=	210.89	kips
φ	=	0.75	φN_{sa}	=	158.17	kips

Concrete Breakout Strength of Anchors in Tension (17.4.2)

$A_{Nc} = 540$ in^2 A_{Nco}	$=9h_{ef}^{2}=$	4356 i	n^2
$\Psi_{ec,N} = 1/(1+2e'_N/3h_{EF}) \le 1.0$)	$\Psi_{ec,N} =$	1.000
$c_{a (min.)} < 1.5 h_{EF}$?	YES	$\Psi_{ed,N} =$	0.764
Cracking at Service Loads?	YES	$\Psi_{c,N} =$	1.000
Headed anchors used, therefore		$\Psi_{cp,N} =$	1.000
$h_{\rm EF} >= 11$ in. ?	YES	$k_{\rm C}$ =	24

$$\begin{split} N_{b} &= k_{C}\lambda_{a} f_{C}^{0.5} h_{EF}^{-5/3} = 138.19 \ \text{kips} \\ N_{cbg} &= \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b} = 13.08 \ \text{kips} \end{split}$$

Anchor bolts are tied into the footings with rebar cages, so concrete breakout will be limited by the tensile strength of the rebar verticals in the cage.

Number of Verticals = 8 Size of rebar = # 5 Tensile strength of the reinforcement = 148.8 kips (ULT)

 $\varphi = 0.75 \qquad \varphi N_{CBG} = 111.60 \text{ kips}$

Pullout Strength of Anchors in Tension (17.4.3)

ABRG	=	1.163	in^2						
$N_P =$	$8A_{BI}$	RGFC	=	23.26	kips	3			
Cracl	king at	Servic	e Load	ds?	YE	S	$\Psi_{c,P}$	=	1
N _{PN} (group) =		$n\Psi_{c,P}N_{P}$, =	139	9.56	kips	
φ =	0.7		φN _{PN}	(group)	=	97	.69	kips	

Side-face Blowout of Anchors in Tension (17.4.4)

$h_{EF} > 2.5 c_{a1}$	NO	SIDE	-FACE	BLOW	OUT W	VILL
$s_1 < 6c_{a1}$?	YES	NOT	CONTI	ROL		
$c_{a2} < 3c_{a1}$?	YES	R =	0.39			
$N_{sb} = 160c_{a1}A$	$_{BRG}^{0.5}\lambda_{a}f_{C}^{0}$	⁵ R	=	41.52	kips	
Therefore,	$N_{sbg} = (1 +$	$s_0/6c_{a1})$	N _{sb} =	46.04	kips	
$\phi = 0.75$		φÌ	√ _{sbg} =	34.53	kips	5

Steel Strength of Anchors in Shear (17.5.1)

Bu	ilt-ı	up grout	pads use	d?	NO		
Vs	=	0.6r	A _{SE} F _{uta}	=	126.53	kips	
φ	=	0.65	φVs	=	82.25	kips	2

Concrete Breakout Strength of Anchors in Shear (17.5.2)

$A_{Vc} = 616$ in ² A_{Vco}	= 4.5(c	$(2_{a1})^2 = 675.28$	1 in^2
$\Psi_{ec,V} = 1/(1+2e_V'/3c_{a1}) \le 1.0$		$\Psi_{ec,V} =$	
$c_{a2} >= 1.5 c_{a1}$?	NO	$\Psi_{ed,V} =$	0.814
Cracking at Service Loads?	YES	$\Psi_{c,V} =$	1.200
Thickness: $h_a = 48$ in		$\Psi_{h,V} =$	1.000
$V_{b} = 7 (L_{e}/d_{a})^{0.2} d_{a}^{0.5} f c^{0.5} c_{a1}^{1.5}$	=	22.75 kips	
$V_{b} = 9\lambda_{a}fc^{0.5}c_{a1}^{1.5}$			CONTROLS
$V_{cbg} = \frac{A_{Vc}}{A_{Vco}} \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V}$	₽ _{h,V} Vb	= 17.20	cips
Concrete breakout in shear will	be resist	ed by rebar tie	es at the

Concrete breakout in shear will be resisted by rebar ties at the top of the footing, tensile capacity of the bars will control.

Tie Size	= #	4 bar			Bar Area	=	0.2	in^2
Number	of Ties at to	op =	3		Fy =	60	ksi	
Tensile (Capacity of '	Ties =		108	kips			
Therefor	e,	ľ	V _{ebg}	=,	108.00	kips	_	
$\varphi = 0$.75		φV _{cbg}	~	81.00	kips		

Concrete Pryout Strength of Anchors in Shear (17.5.3)

Concrete pryout of anchors in shear will only occur where anchors are relatively stiff and short.

$$\frac{h_{EF}}{d_0} = 22 > 6$$

THEREFORE, CONCRETE PRYOUT WILL NOT CONTROL SHEAR DESIGN OF ANCHORS.

ANCHOR ROD GROUP CAPACITY

SDC = C, D, E, & F REDUCE CON	CRETE	ALLOW.	TENS	ION BY	0.75
ALLOW. TENSION $(\Phi N_N) =$	73.27	kips >	14.9	kips	<u>OK</u>
ALLOW. SHEAR (ΦV_N) =	81.00	kips >	48.5	kips	<u>OK</u>

CHECK SHEAR/TENSION INTERACTION

$N_{UA} > 0.2 \Phi N_N ?$ $V_{UA} > 0.2 \Phi V_N ?$	YES YES		UNITY CHECK REQUIRED
$\frac{\mathbf{N}_{UA}}{\mathbf{\Phi}\mathbf{N}_{N}} + \frac{\mathbf{V}_{UA}}{\mathbf{\Phi}\mathbf{V}_{N}} =$	0.80	<	1.20 <u>OK</u>

Worst Case: Endwall Anchors (Tension and Shear)(Wind Controls)

ANCHOR ROD GROUP CHECK (per ACI 318-14 Chapter 17, headed anchors)

Tensile Force on Anchors $(N_U) =$	9.44	kips
Shear Force on Anchors $(V_U) =$	4.64	kips
Seismic Design Category =	С	
Number of Anchors $(n) =$	4	
Number of Anchors in Tension $(n) =$	4	
Anchor Diameter $(d_a) = 0.625$ in $A_{SE} =$	0.226	in^2
Anchor Spacing Perpendicular to Load $(s_1) =$	4	in
Anchor Spacing Parallel to Load $(s_2) =$	3	in
Spacing of outer Anchors $(s_0) \approx$	3	in
Embedment Depth $(h_{EF}) =$	12	in
Yield Strength of Anchors (Fy) =	36	ksi
Tensile Strength of Anchors $(F_{uta}) =$	58	ksi
Edge Distance in Load Direction $(c_{al}) =$	2.5	in
Edge Distance Perpendicular to Load $(c_{a2}) =$	12	in
Concrete Strength $(f_C) =$	2500	psi
Axial Eccentricity $(e'_N) =$	0	in
Shear Eccentricity $(e'_V) =$	0	in

Steel Strength of Anchors in Tension (17.4.1.2)

N_{sa}		$= nA_s$	_E F _{uta}	=	52.43	kips	
φ =	=	0.75	ϕN_{sa}	=	39.32	kips	

Concrete Breakout Strength of Anchors in Tension (17.4.2)

$A_{Nc} = 96$ in ² A_{Nco}	$=9h_{ef}^{2}=$	1296 i	n^2
$\Psi_{ec,N} = 1/(1+2e'_N/3h_{EF}) \le 1.0$		$\Psi_{ec,N}$ =	1.000
$c_{a (min_{*})} < 1.5 h_{EF}$?	YES	$\Psi_{ed,N}$ =	0.742
Cracking at Service Loads?	YES	$\Psi_{c,N}$ =	1.000
Headed anchors used, therefore		$\Psi_{cp,N} =$	1.000
h _{EF} >= 11 in. ?	YES	$k_{\rm C}$ =	24

$$\begin{split} N_{b} &= k_{C}\lambda_{a} f_{C}^{0.5} h_{EF}^{5/3} = 50.32 \quad \text{kips} \\ N_{cbg} &= \frac{A_{Nc}}{A_{Nco}} \quad \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b} = 2.76 \quad \text{kips} \end{split}$$

Anchor bolts are tied into the footings with rebar cages, so concrete breakout will be limited by the tensile strength of the rebar verticals in the cage.

Number of Verticals = 6 Size of rebar = # 4Tensile strength of the reinforcement = 72 kips (ULT)

 $\phi = 0.75 \qquad \phi N_{CBG} = 54.00 \text{ kips}$

Pullout Strength of Anchors in Tension (17.4.3)

$A_{BRG} = 0.454$	in^2				
$N_P = 8A_{BRG}f_C$	= 9.08	kips	6		
Cracking at Service	ce Loads?	YE	S Ψ _{c,I}	, =	1
N _{PN} (group) =	nΨ _{c,P} N	lρ = _	36.32	kips	
φ = 0.7	φN _{PN} (group	o) = [25.42	kips	

Side-face Blowout of Anchors in Tension (17.4.4)

$h_{\rm EF} > 2.5 c_{a1}$	YES					
$s_1 < 6c_{a1}$?	YES					
$c_{a2} < 3c_{a1}$?	NO	R =	1			
$N_{sb} = 160c_{al}A$	$_{BRG}^{0.5}\lambda_{a}f_{C}$	^{0.5} R	=	13.48	kips	
	$N_{sbg} = (1 - 1)$		V _{sb} =	16.17	kips	
φ = 0.75		φN	sbg =	12.13	kips	

Steel Strength of Anchors in Shear (17.5.1)

Built-up grout pads used? NO $V_S = 0.6nA_{SE}F_{uta} = 31.46$ kips $\phi = 0.65$ $\phi V_S = 20.45$ kips

Concrete Breakout Strength of Anchors in Shear (17.5.2)

$A_{Vc} = 28.125 \text{ in}^2 A_{Vco}$	= 4.5(c	$(z_{al})^2 = 28.125 \text{ in}^2$
$\Psi_{ec,V} = 1/(1+2e'_V/3c_{a1}) \le 1.0$		$\Psi_{ec,V} = 1.000$
$c_{a2} >= 1.5 c_{a1}$?	YES	$\Psi_{ed,V} = 1.000$
Cracking at Service Loads?	YES	$\Psi_{c,V} = 1.200$
Thickness: h _a = 48 in		$\Psi_{h,V} = 1.000$
$V_{b} = 7 (L_{e}/d_{a})^{0.2} d_{a}^{0.5} fc^{0.5} c_{a1}^{1.5}$	=	1.66 kips CONTROLS
$V_b = 9\lambda_a f c^{0.5} c_{a1}^{1.5}$	×	нию кира
$V_{cbg} = \frac{A_{Vc}}{A_{Vco}} \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{c,V}$	$P_{h,V}V_b$	= 1.99 kips
Concrete breakout in shear will b	be resist	ted by rebar ties at the

Concrete breakout in shear will be resisted by rebar ties at the top of the footing, tensile capacity of the bars will control.

1 I I I I I I I I I I I I I I I I I I I	0,						
Tie Size =	# 3 b	ar	I	Bar Area	ı =	0.11	in^2
Number of Ties	s at top =	3	I	Fy =	60	ksi	
Tensile Capacit	ty of Ties	=	39.6	kips			
Therefore,		V_{cbg}	=	39.60	kips	<u>.</u>	
$\phi = 0.75$		φV _{ct}		29.70	kips	3	

Concrete Pryout Strength of Anchors in Shear (17.5.3)

Concrete pryout of anchors in shear will only occur where anchors are relatively stiff and short.

$$\frac{h_{\rm EF}}{d_0} = 19.2 > 6$$

THEREFORE, CONCRETE PRYOUT WILL NOT CONTROL SHEAR DESIGN OF ANCHORS.

ANCHOR ROD GROUP CAPACITY

ALLOW. TENSION $(\Phi N_N) =$	12.13	kips >	9.44	kips	<u>OK</u>
ALLOW. SHEAR $(\Phi V_N) =$	20.45	kips >	4.64	kips	<u>OK</u>

CHECK SHEAR/TENSION INTERACTION

$N_{UA} > 0.2 \Phi N_N ?$ $V_{UA} > 0.2 \Phi V_N ?$			UNITY CHECK REQUIRED
$\frac{\mathbf{N}_{\mathrm{UA}}}{\mathbf{\Phi}\mathbf{N}_{\mathrm{N}}} + \frac{\mathbf{V}_{\mathrm{UA}}}{\mathbf{\Phi}\mathbf{V}_{\mathrm{N}}} =$	1.01	<	1.20 <u>OK</u>

Ē	MOUNTAIN VIEW ENGINEERING, INC. 345 No. Main. Suite A • Briaham City, Utoh 84302
	345 No. Main, Suite A • Brigham City, Utoh 84302 Phone (435) 734-9700 • Fax (435) 734-9519

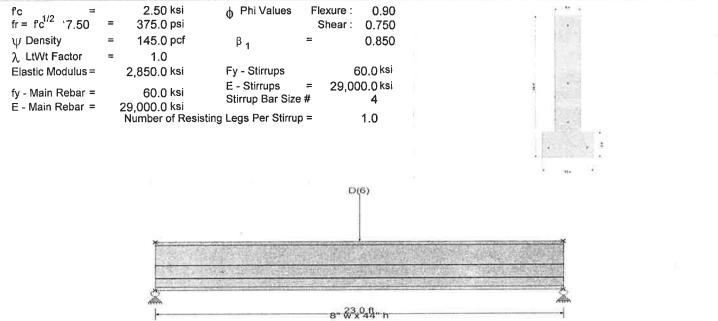
OMPLIANCE 09/18/2023

11

Concrete Beam

LIC# : KW-06014791, Build:20.23.07.20

MOUNTAIN VIEW ENGINEERING, INC.


Project File: 23-0706.ec6 (c) ENERCALC INC 1983-2023

DESCRIPTION: Grade Beam

CODE REFERENCES

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2018

General Information

Cross Section & Reinforcing Details

Inverted Tee Section, Stem Width = 8.0 in, Total Height = 44.0 in, Top Flange Width = 16.0 in, Flange Thickness = 8.0 in Span #1 Reinforcing

2-#4 at 3.0 in from Bottom, from 0.0 to 23.0 ft in this span 1-#4 at 11.0 in from Bottom, from 0.0 to 23.0 ft in this span 1-#4 at 3.0 in from Top, from 0.0 to 23.0 ft in this span 1-#4 at 21.0 in from Top, from 0.0 to 23.0 ft in this span

Beam self weight calculated and added to loads

Point Load : D = 6.0 k @ 11.50 ft

Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable Location of maximum on span	Typical Sec 86 117 1 ⁷	.991 k-ft .297 k-ft 1.521 ft					
Span # where maximum occurs	Span # 1						
Maximum Deflection							
Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection	0.000 in 0.000 in 0.025 in	Ratio = Ratio = Ratio =	0 11159	<360.0 <360.0 >=240.0	Span: 1 : D Only		
Max Upward Total Deflection	0.000 in	Ratio =	0	<240.0	Span: 1 : D Only		
Vertical Reactions			Supp	ort notation	1 : Far left is #1		
Load Combination		Support 1	I Suppor	t 2			
Max Upward from all Load Conditions		7.81	7 7.8	817			
Max Upward from Load Combinations		4.690	0 4.6	690			
Max Upward from Load Cases		7.81	7 7.8	817			
D Only		7.81	7 7.8	817			
+0.60D		4.690	0 4.6	690			

Shear Stirrup Requirements

Entire Beam Span Length : Vu < Phi*Vc / 2, Req'd Vs = Not Reqd per 9.6.3.1, Stirrups are not required.

12

Concrete Beam

LIC# : KW-06014791, Build:20.23.07.20

MOUNTAIN VIEW ENGINEERING, INC.

Project File: 23-0706.ec6 (c) ENERCALC INC 1983-2023

DESCRIPTION: Grade Beam

Maximum Forces & Stresses for Load Combinations

Load Combination			Location (ft)	Bending Stress Results (k-ft)			
Segment	Span #	along Beam	Mu : Max	Phi*Mnx	Stress Ratio		
MAXimum BENDING Envelope Span # 1 +1,40D		1	23.000	86.99	117.30	0.74	
Span # 1 +1.20D		1	23.000	86.99	117.30	0.74	
Span # 1 +0.90D		1	23.000	74.56	117.30	0.64	
Span # 1		1	23.000	55.92	117.30	0.48	
Overall Maximum Deflection	IS g						
Load Combination	Span	Max. "-" Defl (in) .ocati	on in Span (ft Loa	d Combination	Max.	. "+" Defl (in;ocation	in Span (ft
D Only	1	0.0247	11.500			0.0000	0.000