

COMMUNITY OF PHIPPSBURG WWTP IMPROVEMENT PROJECT PHIPPSBURG, CO PROJECT NO. 2310219 (4)

STRUCTURAL CALCULATIONS

DANIEL MAZZEI, P.E., CWI, RRO ENGINEER OF RECORD

> wallace design collective, pc structural ·civil · landscape ·survey 9800 pyramid court, suite 350 englewood, colorado 80112 303,350,1690 ·800,364,5858

TABLE OF CONTENTS

- 01 DESIGN LOADS
- 02 WALLS
- 03 LID
- 04 FOUNDATION SLAB
- 05 BUOYANCY

wallace design collective, pc structural · civil · landscape · survey 9800 pyramid court, suite 350 englewood, colorado 80112 303,350:1690 · 800,364.5858

01 DESIGN LOADS

123 north martin luther king jr. boulevard tulsa, oklahoma 74103 918.584.5858 · 800.364.5858 wallace.design

CODE CHECK

DATE:	7/12/23								
TO:	Routt County Building Department Routt County Courthouse Annex 136 6th St Suite 201 Steamboat Springs, CO 80487								
PHONE:	970-870-556	6	FAX: 970-870-	-5489					
ATTN:	Todd Carr, B	Building Offici	al		EMAIL:	tcarr@co.rc	outt.co.us		
PROJECT:	# 2310219	(8) Wastewa	ter Treatment Ta	nks in Vario	ous Towr	ns Variou	us Towns,		
BY:	PHONE X	VISIT	OTHER		TIME:				
ITEM	DESCRIPTIO	Ν			RESPON	ISE			
1. GOVERN	NING CODE								
А. В. С. D. Е.	Local Building Code: Local Amendments: Do State Building Code Requirements Differ? Observations Required to be performed by EOR? Special Inspections Final Report Required for Certificate of Occupancy?				2018 IBC International Building Code Yes - Seismic provisions Yes - Seismic provisions No No				
2. ROOF LI	VE LOAD								
Α.	Minimum Ro	of Live Load			20 psf				
3. SNOW L	OAD								
А. В.	Ground Snov Minimum Ro	w Load, Pg: oof Snow Loa	d, Pf:			71 psf			
4. WIND LC	DAD								
A. B. 5. SEISMIC A. B.	Design Wind Risk Catego LOAD Mapped Spe Mapped Spe	l Speed: ry ectral Respon ectral Respon	se Acceleration, se Acceleration,	Ss: S1:		112 mph III 0.524 0.097	(short period, 0.2s) (long period, 1.0s)		
6. FROST	DEPTH								
Α.	Minimum Be	aring Depth:				48 in.			
REMARKS:	Phippsburg, 2021 IBC is Snow Load t Snow Loads	CO being adopte used is max l equation ba	d Effective Janua between Routt Co sed on K-value a	ary 1, 2024 ounty Snow nd elevatio	v Load M n	ap tool and	I ASCE 2016 CO Design		

Please notify the undersigned if the above information is incorrect or incomplete.

FROM: Steve Jacob, P.E.

CC:

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IIISoil Class:B - Rock

Latitude: 40.240691 Longitude: -106.942071 Elevation: 7404.36006946248 ft (NAVD 88)

Wind

Results:

Wind Speed	112 Vmph
10-year MRI	76 Vmph
25-year MRI	83 Vmph
50-year MRI	87 Vmph
100-year MRI	92 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1C and Figs.	CC.2-1-CC.2-4, and Section 26.5.2
Date Accessed:	Mon Oct 30 2023	

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Site Soil Class:

Results:

S _s :	0.524	S _{D1} :	0.052
S ₁ :	0.097	Τ _L :	4
F _a :	0.9	PGA :	0.356
F _v :	0.8	PGA M:	0.32
S _{MS} :	0.472	F _{PGA} :	0.9
S _{M1} :	0.077	l _e :	1.25
S _{DS} :	0.315	C _v :	0.875

Data Accessed:

Mon Oct 30 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Results:

Mapped Elevation:

Data Source:

Date Accessed: Mon Oct 30 2023

In "Case Study" areas, site-specific case studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2 percent annual probability of being exceeded (50-year mean recurrence interval).

Statutory requirements of the Authority Having Jurisdiction are not included. Site is outside ASCE/SEI 7-16, Table 7.2-2 boundaries. For ground snow loads in this area, see SEAC Snow Load Committee. (2016). <u>Colorado Designative of the state of the sta</u>

16.8/100 * 7.4^3 = 68.1 psf

NOTE: Routt County Snow Mapper yields value of 71 psf for snow load at this location

SEAC Snow Load Committee Equation:

pg, site = max (k(site)/100 * A^3) = k(site) = 16.8 (see map below) A = 7.4 (thousands of feet in elevation)

Use 71 psf

https://asce7hazardtool.online/

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

	Date	10/30/2023		Sheet		of	
	Job Subject	Phippsburg, CO Wind Loads					
WIND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD ASCE 7-16. Chapters 26, 27 and 30							
, hre	1. Input						
Windward Leewan	Design Paramet	ers Speed Min			energia e .	neh /Section 28	5 Ein 1A 2011
Pressure	Exposure C	alegory (B, C, or D) =			C	Section 26,7)	.o, 11g. 17420 J
Roof	Building Ris	k Category (I, II, III, IV) =			Ш)(Ш	Table 1.5-1)	
	Civil finishe	d floor elevation (if unknown input 0) ≖			6500,00 f	eet (SecL 26.9,	Table 26.9-1}
Walt Walt	tour Holeb	1. 5 In			0.70	(a.a.)	
	Eave Heigh Max Buildin	r, ne = a Helaht or Ridae Heiaht above around leve	sl. Hr =		9.50	eet	
	Parapet He	ight above ground level, Hp ⇒	•		9.50 t	eet	
t l	Building Wil	dth Perpendicular to Wind, 8 = dth Perpendicular to Wind, 1 =			40.00 f	leet (max bldg di foot	m)
) <u> </u>	Enclosure C	Sassification =	en Manusan Ma	Enclose	l Buildings, ((Section 26.12)	
REFER TO FIGURE 27.3-1	Roof Config	uration = Gabled, Hipp	ed or Mon	oslope R	oofs (ø ≤ 7)	. ,	
	Angle of Pla	ene of Roof From Horizontal, θ =			0,50	degrees	
•	ls building c	on or near a hill, ridge, or escarpment?			Ni	(Y or N) (Section	26.8)
z	Height of H	Il or Escarpment relative to upwind terrain, I	H =		10.00	eet (Section 26.	8, Fig. 26.8-1)
x (upwind) x	Horiz. Dist.	Upwind to Point Where Elevation = H/2, Lh	=		10.00	feet (Section 26.	8, Fig. 26.8-1)
	Horiz, Dist.	from Crest to Building Site, x =			10.00	eet (Section 26.	8, Fig. 26.8-1)
	2D Ridge, 2	D Escarpment, or Axisymmetrical Hill =			E	(R, E, or H)	
	is the build	ng site upwind of downwind of the crest?			DOMU	(up, down)	
	2. Calculations - Ma	ain Wind Force Resisting System					
	Equivalent.	Allowable Stress Design Wind Speed, Vasd	=		89.08	mph (IBC 2018,	1609.3.1)
	Mean roof h	neight, h =			9,50 1	feet	
	Kz, velocity	pressure exposure coefficient at hz = 9.5ft	-		0.85	Table 26.10-1	(use with qz)
	Kz, velocity	pressure exposure coefficient at $hh \approx 9.5 ft$	=		0.85	Table 26.10-1	(use with gh)
	Kz, velocity	pressure exposure coefficient at hp = 9.5ft	=		0.85	Table 26.10-1	(Use with gp)
2-D Ridge or Axisymmetrical HN	Kzt tonoora	phic factor at $hb = 9.5h$			1.00 1	Figure 26.6-1	(use with ch)
REFER TO FIGURE 26.8-1	Kzt topogra	obic factor at hn = 9.5ft =			1.00	Figure 26.8-1	(use with co)
	Kd, wind dir	rectionality factor =			0,85	Table 26.6-1	(
	Ke, ground	elevation factor at			0.79	Table 26.9-1	
	G, gust faci	or =			0,85	Section 26.11.4	
	az, velocity	pressure at hz = 9.5ft =			19.33	osf (Ea. 26.10-1))
	qh, velocity	pressure at hh = 9,5ft =			19.33	psf (Eq. 26.10-1)
	qp, velocity	pressure at hp = 9.5ft =			19.33	psf (Eq. 26.10-1))
	Walls: P = o/G	Cof-GCpi} Eqn. 27.3-1	QZ	GCo	GCpl	(1.0)P	(0.6)P
	Windward p	ressure	19.33	0.68	• -	13.1 psf	7.9 psf
			~ ~ ~	6Ca	60-2	/1 MD	(0.6)0
	Leeward Pr	essure	qn 19.33	-0.43	ocbi -	-8.2 osf	-4.9 osf
	Sidewall pre	essure	19.33	-0.60	0.18	-15 psf	-9 psf
	Internal Pre	essure	19.33		0.18	3.5 psf	2.1 psf
	/1 AW/- /3	0\0Mindward + Leeward Processora) =	4	3 15 nef -	8 22 nef =	21 dineF	
	(0.6)W=(0	.6)(Windward + Leeward Pressure) =	•	7.89 psf +	4.93 psf =	12.8 psf	
					-	•	
	Parapets: Pp =	eqp(GCpn) Eqn. 27.3-3	qp 10.22	GCpn	-	(1.0)Pp	(0,6)Pp
	Leeward n	rapet pressure	19.33	-1.0		-19.3 psi	-11.6 psf
	P						
	Windward +	Eeeward Pressure	19.33	2,50		48.3 ps!	29 psf
	Roof Normal to	o Ridge (0≥10 degrees)	qh	GCp	GCpi	(1.0)P	(0.6)P
	Windward F	Pressure case i	19.33	-1.11	0.18	-24.8 psf	-14.9 psf
	Lanuar 1 Ma	case li	19.33	-0.15	0.18	-6,4 psf	-3.9 psf
	Leeward Pr	622016	19.33	-0.60	0.18	-19 psi	~a bat
	Roof All Other	Cenditions	qh	GCp	GCpl	(1.0)P	(0.6)P
	For 0 to h/2	! = 0 ft to 4.75 ft	19.33	-1.09	0.18	-24.6 psf	-14.8 psf
	>h/2 ft		19.33	-0.60	0.18	-15 psf	-9 psf
			19.33			#VALUEI	#VALUEI
			, 4,00				
	Roof Overhang	ps Section 27.3.3	qh	GCp	GCpl	(1.0)P	(0.6)P
	Maximum p	ressures	19,33	-1.11	0,68	-34.5 psf	-20.7 psf

	Date Job	10/30/20 Phippsbu	23 rg, CO		Sheet		of	
	Subject	Wind Loa	105					
WIND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD ASCE 7-16, Chapters 27 and 30	·							
	 3. Input - Component and Cladding Elements Tributary Area for Wall Components, 1 = Tributary Area for Parapet Components, 2 = Tributary Area for Parapet Components, 1 = Tributary Area for Roof Components, 2 = Tributary Area for Roof Components, 2 = Tributary Area for Overhangs or Canopies, 1 = Tributary Area for Overhangs or Canopies, 2 = 4. Calculations - Component and Cladding Elements Kh, velocity pressure exposure coefficient at hn = 9.5ft = Kh, velocity oressure exposure coefficient at hn = 9.5ft = 					10.00 square feet 200.00 square feet 10.00 square feet 50.00 square feet 10.00 square feet 0.00 square feet 0.00 square feet 0.85 Table 26.10-1 (use with q 0.85 Table 26.10-1		
elbvation	Kzt,topogra Kd, wind dir Ke, ground G, gust fact	phic factor a ectionality fa elevation fac or =	t hp = 9.5ft = actor = ctor at			1,00 0,85 ⁻ 0,79 ⁻ 0,85 \$	Figure 26.8-1 Table 26.6-1 Table 26.9-1 Section 26.11.4	(use with qp)
	qh, velocity qp, velocity	pressure al pressure at	hh = 9.5ft = hp = 9.5ft =			19.33 19.33	psf (Eq. 26,10-1) psf (Eq. 26,10-1)	
0.6h	Walls: trib. Are	a = 10 sq. ft		qh	GCp	GCpl	(1.0)P	(0.6)P
	Zone 4	Interior Z	one	19.33	-0.99	0.18	-22.6 psf	-13.6 psf
	Zone 5 Zone 4 cod	End Zone	e	19.33	-1.26	0.18	-27.8 psf	-16,7 psf
0.2h-1	2016 4 810	5		19.55	0.00	-0.10	2010 201	12:0 [53]
	Walls: trib. Are	a = 200 sq.	ft.	qh	GCp	GCpi	(1.0)P	(0.6)P
	Zone 4	Interior Z	one	19,33	-0.78	0.18	-18.6 psf	-11.2 pst
	Zone 5 Zone 4 and	5	9	19.33	-0.85	-0.18	-19.6 psi 16.9 psf	-17.5 psi 10.1 psf
0.01	Parapets: trib.	Area = 10 s	q. ft.	9p 10.22	GCp 2.07	GCp1 _	[1.0]P	(0,6)P
0.011	Case A	Zone 5	· End Zone	19.33	3.78	0.00	73.1 psf	43,8 psf
0 L	Coot B	7000 /	latorias Zano	10.22	1.80	0.00	28 E nof	31 0 mmf
	Case B	Zone 5	End Zone	19.33	2,16	0.00	41.8 psf	25.1 psf
PLAN	Parapets: trib.	Area = 50 s	ą. ft.	qp	GCp	GCpi	(1.0)P	(0.6)P
	Case A	Zone 4	Interior Zone	19.33	2.53	0.00	48.8 psf	29.3 psf
		Zone 5	End Zone	19.33	3.00	0.00	58 psf	34.8 psf
	Case B	Zone 4	Interior Zone	19.33	1.67	0.00	32.2 psf	19.3 psf
		Zone 5	End Zone	19.33	1.83	0.00	35,3 psf	21.2 psf
	Roofs: trib. An	ea = 10 sq. f	ít.	gh	GCp	GCpl	(1.0)P	(0.6)P
\mathbf{N}	Corner Zon	e (3)		19.33	-3,20	0,18	-65.3 psf	-39.2 psf
to	End Zone (2) a (1)		19.33	-2.30	0.18	-47.9 psf	-28.8 psf
	Interior Zon	e (1) e (1)		19.33	-0.90	0.18	-36.3 psi -20.9 psf	-12.5 psi
	Positive (Al	Zones)		19.33	0.30	-0.18	16 psf	9.6 psf
	Roofs tab. An	a = 100 en	ft.	oh	6Cn	GCni	(1,010	(0.61P
ELEVATION	Comer Zon	e (3)		19.33	-2.14	0.18	-44.9 psf	-26.9 psf
	End Zone (2)		19.33	-1.77	0.18	-37.7 psf	-22.6 psf
FEFER TO FIGURE 38.5-2A	Interior Zon	18 (1) 18 (1')		19.33	-1.29 -0.90	0.18	-28.4 pst -20.9 psf	-17 pst -12.5 psf
	Positive (A	I Zones)		19,33	0.20	-0.18	16 psf	9.6 psf
	Overhangs: tri Corner Zon	b. Area = 10 e (3)) sq. ft.	qh 19,33	GCpn -3.20	-	(1.0)Pp -61.9 psf	(0.6)Pp -37.1 psf
	End Zone (2}		19.33	-2,30		44.5 psf	-26.7 psf
	Interior Zon	e (1)		19.33	-1.70		-32,9 psf	-19.7 psf
	anenor Zor	∾(I)			-1.70		-J2,9 pst	-ia'i hai
	Overhangs: tri	b. Area ≃ 50	l sq. ft.	qh 10.22	GCpn		(1.0)Pp	(0.6)Pp
	End Zone (2)		19.33	-2.34 -1.81		-34,9 psf	-21 psi
	Interior Zor	ie (1)		19.33	-1.63		-31.5 psf	-18.9 psf
	Interior Zor	ið (1')		19.33	-1.63		-31.5 psf	-18.9 psf

a, end zone width = Min. of 10% L and .4H but not < 4% L or 3' =

Notes:
1. The gust factor of 0.85 is based on a building with a natural frequency of > 1 Hz. For other buildings, the gust factor must be calculated.
2. GCp for walls include a 10% reduction when angle of roof is 10 deg or less. (Figure 30.3-1, Footnote 5)
3. If a parapet equal to 3 ft or higher is provided around the perimeter of a roof with a slope of ≤ 7°, the roof corner zones may be treated as end zones. (Fig. 30.3-2A, Footnote 5)

WALLAGE DESIGN PROGRAM Revised 12/27/18. Sheila Butcher				
Copyright ©				
	Date	11/9/2023	Sheet No.	of
	Job	Phippsburg, C	CO WWTP	
	Subject	Seismic Load	S	
SEISMIC LOAD SUMMARY				
2018 IBC (Ch: 16) and ASCE 7-16 (Ch: 11 to 13)				
4 Innut				
1. Input				
Spectral Response Acceleration for Short Periods, Ss =		0.524		
Spectral Response Acceleration for 1-second Periods, S1 =		0.097		
Risk Category =			(IBC Table 1604	4.5 & ASCE: Table 1-5-1)
Site Classification (A,B,C,D,E,F) =		В	(ASCE 7 Ch.20	Table 20.3-1)
Basic Structural System BE	ARING WA	LL SYSTEMS	(Table 12.2-1)	
Lateral Force Resisting System Ordinary Reinforce	ed Concret	e Shear Walls	(Table 12.2-1)	10.0.4
px, redundancy in x-dir.= (Redundancy is either	r 1.0 or 1.3)	1.00	(ASCE 7 Sectio	n 12.3.4)
r =1.0 for Seismic Design Category B and C RE: ASCE 7 Section 12.3.4.1 for additional exceptions	1 1.0 01 1.3)	1.00	(ASCE / Sectio	11 12.3.4)
Is Structure regular with a period < .5 sec?		Yes	(Yes or No, AS	CE 7 Section 12.8.1.3)
Is Structure short period with a rigid diaphragm?		No	(Yes or No, AS	CE 7 Section 11.6)
Is Structure short period w/ non-rigid diaphragm & vertical elements of seismic force-resisting system spa	aced at 40'	c No	(Yes or No, AS	CE 7 Section 11.6)
Does Structure have a flexible diaphragm?		Yes	(Yes or No, AS	CE 7 Section 11.6)
(For Wall anchorage requirements per Section 12.11.2.1)		50.007	fa at (in much 0 fa	an aincid diamban ana)
Span length of flexible diaphragm -x dir. =		56.667	feet (input 0 to	or rigid diaphragm)
Span lengur of flexible diapriragm -y-dir		14	leet	
2. Determine Design Spectral Response Accelerations and Seismic Design Category, Section 11.6:				
Response Modification Factor, R =		4	(Table 12.2-1)	
Overstrength Factor, Ωo = (refer to footnote b for .5 reduction for Flexible Diaphragms)		2	(Table 12.2-1)	
Deflection Amplification Factor, Cd =		4	(Table 12.2-1)	
Acceleration for Short Period				
Site Adjusted Spectral Beamanas Assolutation for Short Deviade, Small		0.90	(IBC Table 161	3.2.3(1), ASCE 7 Table 11.4-1)
Site Adjusted Spectral Response Acceleration for Short Periods, Sms =		0.472	(IBC Section 16	13.2.3, ASCE 7 Section 11.4.4)
Site Coefficient Ev =		0.80	(IBC Table 161	3 2 3(2) ASCE 7 Table 11 4-2)
Site Adjusted Spectral Response Acceleration for 1-second Periods. Sm1 =		0.078	(IBC Section 16	13.2.3, ASCE 7 Section 11.4.4)
		0.070		10.2.0, AOOE / Occaon 11.4.4)
Design Spectral Response Acceleration for Short Periods, Sds =		0.314	(IBC Section 16	13.2.4 and ASCE 7 Section 11.4.5
Seismic Design Category based on short period =		В		
Design Spectral Response Acceleration for 1-second Periods, Sd1 =		0.052	(IBC Section 16	13.2.4 and ASCE 7 Section 11.4.5
Seismic Design Category based on 1-second period =		A		
Design Response Spectrum, Is =		0.165	seconds (Section	on 11.4.6)
Approximate Fundamental Period, 1 a =		0.500	seconds (Sectio	on 12.8.2.1)
Can the Seismic Design Category be based on the short period alone?		0.650 No	I Seconds (Secul	13 2 5 1 ASCE 7 Section 11 6)
our are detaine besign ducegory be based on the short period dione :		NO	(IDC Section 10	13.2.3.1, AGGE / Gettion 11.0)
Seismic Design Category =		в	(Most severe ca	ase except as allowed by Sect 11.6
с с <i>,</i>				
3. Seismic Base Shear for the Lateral Force Resisting System using the Equivalent Lateral Force Pro	ocedure, Se	ction 12.8:		
a. Calculation of Seismic Base Shear Coefficient:				
Sajamia Importance Factor I -		1 25		15.0.)
$C_{s} = (Sd_{s}/(R/1)) =$		0.098	(ASCE 7 Table (ASCE Equation	1.3-2) 12.8-2 Section 12.8.1.3)
		01000	(/IOOL Equation	1 12:0 2, 000001 12:0:1:0)
b. Seismic Base Shear, Section 12.8.1:	5	Strength (1.0E)	ASD (0.7E)	
V = Cs W =		0.098 W	0.069 W	
c. Horizontal Seismic Load, Section 12.4.2.1=	5	Strength (1.0E)	ASD (0.7E)	
For the X-direction: En=		0.098 W	0.069 W	
		0.050 44	0.005 W	
d. Vertical Seismic Load Component. Section 12.4.2.2:				
Ev = 0.2 Sds D =		0.063 D	0.044 D	
For structures in SDC B and for the design of foundations using ASD, Ev may be taken as zero. (Section	n 12.4.2.2)			
e. Find the Design Seismic Shear for the Diaphragm, Section 12.10.1.1:	5	Strength (1.0E)	ASD (0.7E)	
Force shall not be less than 0.2*Sds*le*wpx =		0.079 W	0.055 W	
hut need not exceed 0.4*le*Sde wrx =		0.157 W	0.110 44	
For a one story building, Fpx =		0.098 W	0.069 W	
f. For collector elements in Seismic Design Categories C through F, Section 12.10.2				
Emh = Ωo V =		0.197 W	0.138 W	
Notoe:				
1.A building that is low rise (one or two story) building with a short period is assumed for calculation of Seis	smic Respo	nse Coefficient	t, Cs.	

A building that is low rise (one or two story) building with a short period is assumed for calculation of Seismic Response Coefficient, Cs.
 The values for design spectral response acceleration assume a regular structure of 5 stories or less with a period, T < 0.5 seconds
 The values for design forces for the diaphragm assume no offsets or changes in the stiffness of the vertical components
 Section 1613.1 of 2018 IBC excludes the detailing requirements of Chapter 14 of ASCE 7.
 Per Section 1613.2.2 and 11.4.3, if site investigations performed per ASCE 7 Chpt 20 reveal rock conditions consistent with Site Class B, but site-specific velocity measurements are not made, Fa and Fv shall = 1.0.

WALLACE DESIGN PROGRAM Revised 12/27/18, Sheila Butcher Copyright © Date 10/30/2023 Sheet No. of Job Subject SEISMIC LOAD SUMMARY 2018 IBC (Ch: 16) and ASCE 7-16 (Ch: 11 to 13) 4. Minimum Continuous Load Path, Interconnection and Connection to supports, Section 12.1.3 and 12.1.4: a. Continuous Load Path and Interconnections, Section 12.1.3: Strength (1.0E) ASD (0.7E) F_p = 0.133 $S_{ds} W_p$ or .05 W_p min. = 0.052 Wp 0.037 Wp (Section 12.1.3) b. Connection to Supports, Section 12.1.4 : Fp= .05 * dead + live reaction = 0.050 Rd+I 0.035 Rd+I (Section 12.1.4) 5. Structural Walls and Anchorage, Section 12.11 Strength (1.0E) ASD (0.7E) a. Minimum Out-of-Plane Forces on Structural Walls, Section 12.11.1: 0.157 Wp 0.110 Wp (Section 12.11.1) $F_n = 0.40$ le Sds wp or .10 wp min = b. Minimum anchorage connection of structural walls to supporting construction, Section 12.11.2.1 and 12.11.2: Per 12.11.2.2, the strength For loading in the x-direction: design force for steel Strength (1.0E) ASD (0.7E) elements with the exception k_a= 1.0+L_f/100 or max 2.0 = 1.50 of anchor bolts and Fp= 0.4 S_{ds} k_a I_e W_p or .2 k_a I_e Wp min. = nnections at Flexible Diaphragms: 0.375 Wp 0.263 Wp reinforcing steel shall be increased by 1.4 times. $F_{p}^{\ \ \star}$ 1.4 for steel elements per 12.11.2.2.2 0.525 Wp 0.368 Wp k₂= 1.0 Fp= 0.4 S_{ds} k_a I_e W_p or .2 k_a I_e Wp min. = For Connections not at Flexible Diaphragms: 0.250 Wp 0.175 Wp Fp * 1.4 for steel elements per 12.11.2.2.2 0.350 Wp 0.245 Wp For loading in the y-direction: $k_a = 1.0 + L_f / 100 \text{ or max } 2.0 =$ 1.14 Fp= 0.4 $S_{ds} k_a I_e W_p$ or .2 $k_a I_e Wp$ min. = 0.285 Wp 0.200 Wp For Connections at Flexible Diaphragms: Fp * 1.4 for steel elements per 12.11.2.2.2 0.399 Wp 0.279 Wp . k_a= 1.0 Fp= 0.4 $S_{ds} k_a l_e W_p$ or .2 $k_a l_e Wp$ min. = For Connections not at Flexible Diaphragms: 0.250 Wp 0.175 Wp Fp * 1.4 for steel elements per 12.11.2.2.2 0.350 Wp 0.245 Wp The minimum wall anchorage load for concrete or masonry walls is 0.2* the wall weight or 5 psf per 1.4.4. 6. Horizontal Seismic Design Force on Nonstructural Architectural Components, Section 13.3: For Ip =1.0 For Ip=1.5 En max = 1.6 Sds In Wn= 0.503 Wp 0.755 Wp (Equation 13.3-2) Fp min = 0.3 Sds lp Wp= 0.094 Wp 0.141 Wp (Equation 13.3-3) The Seismic Design Force is based on Equation 13.3-1, with the minimum and maximum limits noted above. Fp= 0.4 ap Sds Wp (1 + 2 z/h)/(Rp/Ip) Seismic Design Force Summary on Architectural Components, Section 13.5: ap= Rp= lp= z/h= trength (1.0E) ASD (0.7E) 1. Cantilevered (Unbraced) Parapets and Chimneys 2.50 2.50 1.00 1.00 0.377 Wp 0.264 Wp (Table 13.5-1) 2. Braced Interior Non-masonry walls and partitions Fp at floor= 1.00 2.50 1.00 0.00 0.094 Wp 0.066 Wp (Table 13.5-1) Fp at roof= 1.00 2.50 1.00 1.00 0.151 Wp 0.106 Wp (Table 13.5-1) Fp average at roof and floor: 0.123 Wp 0.086 Wp 3. Braced Interior Unreinforced masonry walls and partitions Fp at floor= 0.094 Wp 1.00 1.50 1.00 0.00 0.066 Wp (Table 13.5-1) Fp at roof= 1.50 . 0.252 Wp 0.176 Wp (Table 13.5-1) 1.00 1.00 1.00 Fp average at roof and floor: 0.173 Wp 0.121 Wp 4. Cantilevered (Unbraced) Interior Nonstructural walls 2.50 2.50 1.00 0.00 0.126 Wp 0.088 Wp (Table 13.5-1) 5. Braced Parapets and Chimneys 1.00 1.00 1.00 0.151 Wp 0.106 Wp (Table 13.5-1) 2.50 6. Exterior Nonstructural Wall Elements Fp at floor= 1.00 2 50 1.00 0 00 0.094 Wp 0.066 Wp (Table 13.5-1) Fp at roof= 1.00 2.50 1.00 1.00 0.151 Wp 0.106 Wp (Table 13.5-1) Fp average at roof and floor: 0.123 Wp 0.086 Wp For the Body of the Wall Panel Connection: Fp at floor= 1.00 2.50 1.00 0.00 0.094 Wp 0.066 Wp (Table 13.5-1) Fp at roof= 1.00 2.50 1.00 1.00 0.151 Wp 0.106 Wp (Table 13.5-1) For the fasteners of the connecting system: Fp at floor= 0.00 0.157 Wp 0.110 Wp (Table 13.5-1) 1.25 1.00 1.00 Fp at roof= 1.25 1.00 1.00 1.00 0.472 Wp 0.330 Wp (Table 13.5-1) 7. Appendages and Ornamentation 2.50 2.50 1.00 1.00 0.377 Wp 0.264 Wp (Table 13.5-1)

Notes:

1. Refer to Section 13.4.2 for additional requirements for anchors in concrete and masonry.

2 Section 1613.1 of 2018 IBC excludes the detailing requirements of Chapter 14 of ASCE 7.

WALLACE DESIGN PROGRAM Revised 12/27/18, Sheila Butcher Copyright ©

Date 10/30/2023 Sheet No. of Job Subject

SEISMIC LOAD SUMMARY 2018 IBC (Ch: 16) and ASCE 7-16 (Ch: 11 to 13)

Table 11.4-1 and IBC 1613.2.3(1)	
Site Coefficient Fa	

		Site Co	efficient, Fa				
Site	Mapped Spe	ectral Respo	nse Accelerat	tion at Short I	Periods (Ss))	Distance
Class	Ss<=0.25	0.5	0.75	1	1.25	Ss>=1.5	Value
А	0.80	0.80	0.80	0.80	0.80	0.80	0.80
В	0.90	0.90	0.90	0.90	0.90	0.90	0.90
С	1.30	1.30	1.20	1.20	1.20	1.20	1.29
D	1.60	1.40	1.20	1.10	1.00	1.00	1.38
E	2.40	1.70	1.30	1.20	1.20	1.20	1.66
F							

Minimum of 1.2 per Section 11.4.4 considered. Exceptions per Section 11.4.8 included.

Table 11.4-2 and IBC 1613.2.3(2) Site Coefficient, Fv

Site Coefficient, Fv								
Site	Mapped Spec	tral Respon	se Acceleratio	on at 1 Secon	d Period (S1)	Distance	
Class	S1<=0.1	0.2	0.3	0.4	0.5	S1>=0.6	Value	
Α	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
В	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
С	1.50	1.50	1.50	1.50	1.50	1.40	1.50	
D	2.40	2.20	2.00	1.90	1.80	1.70	2.40	
E	4.20	3.30	2.80	2.40	2.20	2.00	4.20	
F								

IBC Table 1613.2.5(1) and 11.6-1

ismic Design Catego	ry based or	Short Peri	od Response Acceleratic		
Value of	Occ	upancy Cate	Design		
Sds	l or ll	111	IV	Category	Category
Sds <= 0.167	А	А	A	A	В
0.167 <= Sds < 0.33	В	В	С	В	
0.33 <= Sds < 0.5	С	С	D	С	
0.5 <= Sds	D	D	D	D	
S1 >= 0.75	E	E	F	E	

Table 1613.2.5(2) and 11.6-2

Seismic Design Cate	gory Base	d on 1-Seco	nd Period Respor	ise Acceleration	
Value of	Occ	upancy Categ	gory	Design	-
Sd1	l or ll	III	IV	Category	Category
Sd1 <= 0.067	А	А	A	A	А
0.067 <= Sd1 < 0.133	В	В	С	В	
0.133 <= Sd1 < 0.2	С	С	D	С	
0.2 <= Sd1	D	D	D	D	
S1 >= 0.75	E	E	F	E	

WALLACE DESIGN PROGRAM

Revised 05/20/19, Carrie Johnson Copyright © 10/19/93

	Date Project Subject	11/6/2023 Phippsburg WWTP Snow Load	Sheet No.	of
FLAT ROOF SNOW DRIFT - Joists Perpendicular to Wall ASCE 7-16				
	1. Input			
Wb1 Wb2 Wd Hc Hr hd	Dead Load = Roof Live Loa Pg, Ground S Drift for parap Risk Categoy Ce, Exposure Ct, Thermal F Use Pg minin Geometry	15 y 20 y 70.16 y U (III ⁻ 1.00 ⁻ 1.00 ⁻ y (osf osf P), (PR) or (U) Fable 1.5-1 Fable 7.3-1 Fable 7.3-2 Y or N)	
	T.O.W., Top (J.B.E., Joist E td, Thickness Wb1, length (Wb2, length (S, Joist Spac L, Joist Span	9.50 f 0.00 f 0.01 i 40.00 f 2000.00 f 1.00 f 22.50 f	eet eet nches eet eet eet eet	
Configuration	2. Balanced Snov	v Load Check		
Assume very long lower "roof" is grade next to WWTP, where drift can build up	Is, Importanc Pf = 0.7 Ce C Pm = Is Pg = Rain on snow Pmin = 3. Drifted Snow L	e Factor = it Is Pg = v surcharge = .oad Check	1.10 54.02 22.00 0.00 54.02	Γable 1.5-2 osf (7.3-1) osf (7.3.4) osf (7.10) osf
Use constant 220 psf snow load where drifts may occur	Pf = Pg = D = 0.13 Pg + hb = Pf/D = Wb = hd = 0.75[0.4 hd + hb = hr = hc = hr - hb = Wd = 4 hd or Pmax = D (hc Pd =D hd ≤ D 4. Uniform Load = Drifted Snow Loc R left = R right =	+ 14.0 ≤ 30 pcf = 3 Wb2^1/3 (Pg+10)^1/4-1.5] Is ^A 4 [hd^2/hc] ≤ 8 hc = 4 + hb) ≤ D hr = 9 hc = Summary 9 ad Snow 2227.0 1983.1	77.18 ; 23.12 ; 3.34 f 2000.00 f 2 11.54 f 14.88 f 9.50 f 6.16 f 49.29 f 219.63 ; 142.45 ; 2395.7 l 2395.7 l	bs bs bs
Snow Drift	w max = w base = w drift = w equiv =	11850.8 70.2 149.5 198.0	2 85.2 5 164.5 0 213.0	olf olf olf *

Load Without Drift

	Snow	Total
w (Pmin = 54.0232)	54.0	69.0 plf

* indicates controlling load (drifted vs. undrifted)

02 WALLS

123 north martin luther king jr. boulevard tulsa, oklahoma 74103 918.584.5858 · 800.364.5858 wallace.design

]	Date:	11/6/2023		
Ī	lob:	2310219(4) - F	hippsburg W	WTP
	Subject:	Tank Wall Des	ign	<u>.</u>
		1	Referenc	e
Interior Tank Wall		ļ	ACI 350-06	ACI 318-14
Short wall				
* Worst case condition - overflow one side of wall, other side of wall is	s empty			
- assume overflow condition is completely full to bottom of lid (conse	rvative)			
Lid Fluid Processo	on wall fr		רכם	
digested slude	ze anaeroł		N 2.2	
p _{nut} =	70 z	ncf		
	,0	pei		
H = 7.81 ft (Height considers	s low point of	Sludge		
Tank with sloping	g slab)	0		
	N max			
F	Force at ba	se of wall		
Base				
H*p _{fiuid} =	546.875	plf		
Minimum wall thickness = 12"	<- Controls		14.6.2	
Minimum thickness = 6" or $\ell/30$			14.6.1	
Lid span, ℓ ℓ = 14.75 ft ℓ /30 = 5.9 i	n			
Assume pinned condition top and fixed bottom. (No backfill before lid	is poured)			
Mmax = = 1753 lb ft / ft (triangular loa	ad, fixed			
Vmax = W = 1546 lbs/ft base, pinned	top)			
(See RISA output	t)			
Modification factor, Sd			9.2.6	
Sd = $\phi Fy/(\gamma fs)$				
$\phi = 0.9$ (modification factor for tension-con-	trolled sect	tion)	R9.2.6	
Fy = 60,000 psi (Steel yield strength)				
$\gamma = U \text{ factor}$ (Ultimate Load Factor (LRFD))				
fs = 20,000 psi (Steel direct hoop and tensile streng	gth)			
$TS_{max} = \frac{320}{D_{10}(202 + 4/2) + dk/2}$			10.6.4.1	
$B (S^{2} + 4(2+db/2)^{2})^{10.5}$	al" environm	nent exposure:		
Coating to be applie	d to concret	te surrace, per		
B = 1.55 $Aquaworks, sherwin$ $db = 0.5 lin (#4 har)$ Therefore	williams Du	and-Plate 6000.		
s = 12 in spacing	e environnie	EITT IS NORMAL		
fs _{max} = 20000 psi (for flexural stress)			10.6.4	
20000 psi (for direct and hoop tensile stress in	normal ex	posure)	9.2.6.2	
Sd Table		. ,		
U factor Sd U * Sd Note: Geotechnical Report i	indicates lat	eral pressure		
1.2 2.25 2.70 exceeds 70 psf below the w	ater table	1		
1.6 1.69 2.70 Borings showed groundwate	er at 10 ft be	elow grade		
1.4 1.93 2.70 Therefore, this higher press	ure is not co	onsidered		
Mu = Mmax (U) Sd= 4733 lb ft in the design of the foundat	tion walls			
	-			
			1	

		Date:	11/6/2023		
		Job:	2310219(4) - F	hippsburg W	WTP
		Subject	Wall design		
				Reference	
Wall thickness		linaa	(#1 bar)	ACI 350-06	ACI 318-14
Clear cover = 2.0 lin	AS = 0.2	Jin''Z Linsi	(#4 Ddf) at 12" spacing	771	
Bar diameter = 0.5 in	f'c = 4500	psi	at 12 spacing	Table 4.2.2	
d = 9.75 in	b = 12	in			
		-			
Check Wall Flexure Mn > Mu					
ρ min = 0.00180 <== See rho min	n calcs below (For Slabs rho	min is T&S St	eel)		Table 7.6.1.1
$\rho = As / (b^{*}d)$ 0.00171 <== If ρ is less the	han ρ min, see below				
See Table 21.2.2 For Strain Boundaries when (ct) is compre	ession controlled, transition	or tension con	trolled		
No Compression Controlled	If et < etv				Tbl 21 2 2
No Transition Zone If $\varepsilon_{tv} < \varepsilon$	r, < 0.005				101. 21.2.2
Yes Tension Controlled Since	e (ct) = or > 0.005				
···· - ···· - ·· - ··· ··· - ··· - ··· - ··· - ··· - ··· - ·· - ··· - ··· - ·· -	. ,				21.2.1
** Solve for phiMn Based on Whitney Stress Blo	ock				
a = stress block depth = As*Fy / (0.85*f'c*beff) =	= 0.2614	in.			Fig R21.2.2a
c = depth to neutral axis = a / β =	0.3169	in.			
Mn = Nominal Moment Cap = As*Fy*(d-a/2)/12	= 9619	ftlb.			
φ= •Mn = Illtimate Moment Con =	0.9	ft llb			21.2
check against o min =	8057.4 0.0033	· πID.	¢.		
check against o max =	0.0055	<== determir	φ e rho max eqn		
lf below ρ min, multiply As x 1.33 =	0.2660	in^2	ie nie niaz eqn		9.6.1.3
if below ρ min, multiply phiMn x 0.75 =	6493.01	lb-ft			
in.	. φMn x 0.75 = 1 / 1.33 x φM	n = reduction	if ρ < ρ min)		9.6.1.3
(n	ote: code says ρ min need n	ot be satisfied	if		
As	s > 1.33 * As Required, so if	ρ min is not m	et, can		
sir	mply reduce capacity by 1/4	or multiply x 0	.75)		
φMn = Ultimate Moment Cap =	6493.0147	lb-ft			
Mu = Mmax (U) Sd = 4733.1 lb ft < 1200	fMn - Wall Flexure OK	Utilization =	0.73		
N	ata.				
N A	ole: 500 psi is minimum conc	roto strongt	n for concrete	Table / 3 1	
	ith low permeability (co	ncrete is coa	ted	10010 4.3.1	
is	coated as directed by A	quaworks)			
	,	,			
Check ρ balanced and et=.005 limits:					
β = Max of ((0.85-0.05*(f'c-4000)/1000,0.65)) =	0.8250)		10.2.7.3	
ϵ ty = tension yield strain = fy / Es	0.0021	<== Es = 29	,000,000 psi	R10.3.2	
ec = balanced concrete strain =	0.0030			R10.3.2	
et = actual tension strain = ((d-c) / c)*strain sc	0.0893			R10.3.3	
0 temp = temp and shrink steel = 0.0018	= if Ev<60.000 psi .002 -or .00	118 * 60 000pci	/ Fv	Table 7 12 2 1	
As(temp) = (ρ temp * beff * h) = 0.2592 in	^2	00,000003	, . y	10510 7.12.2.1	
, i/ u p -					
ρ bal = (0.85*f'c* β /Fy)*(0.003/(0.003+ ϵ ty)	0.0311	<== balanced	steel ratio	R10.3.3	
0.75(p bal)=	0.0233			R10.3.5	
ρt = (.85*β*f'c / Fy)*(0.003/(0.008))	0.0197	<== Max reinf	Ratio, when steel st	rain >= .005	
As (max) = (ρt * beff * d) =	2.3076	in^2		R10.3.5	
					0.6.1.0
$\rho \min(b) = 200/ty=$	0.0033			10 F 1	9.6.1.2
$p \min(a) - 3 (i c)^{-0.3/Fy=}$ $0 \min(a) - 3 \min(a) or 0 \min(b) - 3 \min(b) - 3 \min(b) - 3 \min(b)$	0.0034	< Min r	einf Ratio	10.3.1	9.0.1.2
As (min)= (ρ min * beff * d) =	0.3924	in.2 <== unles	s As > 1.33*As read a	er code	9.6.1.3
· / /r	0.002	unes			

Date: 11/6/2023		
Job: 2310219(4) - F	hippsburg W	NTP
Subject Wall design		
	Reference	9
	ACI 350-06	ACI 318-14
4. Check Shear Capacity		
**neglects Vs (shear reinforcement)		
$Vc = 2^{\circ} \wedge (fc)^{\circ}.5^{\circ} b^{\circ} d =$ 15697 lbs		11.2.1.1
φ = 0.75		21.2
φVC/2 = **For Beam Design (h > 10 in.) 5886 lbs / ft		11.4.6.1
Check if shear capacity is OK without considering shear reinforcement		
(Envorinmental durability factor does not apply to steel shear capacity)	9.2.6	
Vu = Vmax (U) =2473.6Ibs> Vu - Wall Shear OKUtilization =0.42		
U (Fluid Pressure) = 1.6 No Reinforcement Check Needed	9.2.1	
Use 12 in wall $w/(#4 har)$ @ 12 in spacing		
	I	

	Date: 11/6/2023
	Job: 2310219(4) - Phippsburg WWTP
	Subject Wall design
	Reference
Tall wall	ACI 350-06 ACI 318-14
* Worst case condition - overflow one side of wall, other side of wal	l is empty
- assume overflow condition is completely full to bottom of lid (con-	servative)
Lid Fluid Pressu	re on wall from R 2.2
digested slu	dge, anaerobic =
70	pcf
Design is ba	sed on liquid height 6" below lid
H = 11.31 ft	
	Force at base of wall
Base	H * p _{fluid} =
Wmax =	= 791.763 plf
Minimum wall thickness = 12"	<- Controls 14.6.2
Minimum thickness = 6" or $\ell/30$	14.6.1
Lid span, ℓ = 14.75 ft $\ell/30$ = 5.9) in
Assume pinned condition top and fixed bottom. (No backfill before	lid is poured)
Mmax = = 6694 lb ft / ft (triangular l	oad, fixed
Vmax = W = 3601 lbs/ft base, pinne	ed top)
(See RISA outp	put)
Modification factor, Sd	9.2.6
Sd = $\phi Fy/(\gamma fs)$	
$\phi = 0.9$ (modification factor for tension-co	ontrolled section) R9.2.6
Fy = 60,000 psi (Steel yield strength)	
$\gamma = U \text{ factor}$ (Ultimate Load Factor (LRFD))	
fs = 20,000 psi (Steel direct hoop and tensile stre	ngth)
fs _{max} = 320	10.6.4.1
B (s ² + 4(2+db/2) ²) ^{0.5} For "Norma	al" environment exposure:
Coating to be applied	d to concrete surface, per
B = 1.35 Aquaworks, Sherwin	Williams Dura-Plate 6000.
db = 0.75 in (#6 bar) Therefore	e environment is NORMAL
s = 9 in spacing	
ISmax = 23292 psi (for flexural stress)	
20000 psi (for direct and noop tensile stress	9.2.0.2
1.2 1.93 2.32	
1.0 1.45 2.32	
14 166 222	
1.4 1.66 2.32	

		Date:	11/6/2023		
		Job:	2310219(4) - I	Phippsburg W	WTP
		Subject	Wall design		
				Referenc	e
Wall design				ACI 350-06	ACI 318-14
Wall thickness = 12 in	As = 0.58	7 in^2	(#4 bar)		
Clear cover = 2.0 in	Fy = 60,00	0 psi	at 9" spacing	7.7.1	
Bar diameter = 0.75 in	f'c = 450	i O psi	1 0	Table 4.2.2	
d = 9.63 in	b = 1	2 in			
	~				
Check Wall Flexure Mn > Mu					
$0 \min = 0.00333$	- <== See o min calcs below (For Slabs omin	is T&S Steel)		
$p = As / (b^*d)$ 0.00508	<== If ois less than rho min	see helow			
See Table 21.2.2. For Strain Boundaries when (at) is see	• In pio loop than the mini,		ntrollad		
See Table 21.2.2 For Strain Boundaries when (ct) is con	ipression controlled, transitio	n or tension co	nuollea		
No. Compression Controll	ad If at a atu				
					101. 21.2.2
No I ransition Zone If ε_{ty}	< ¢ _t < 0.005				
Yes Tension Controlled Si	nce (ɛt) = or > 0.005				
					21.2.1
** Solve for phiMn Based on Whitney Stress I	Block				
a = stress block depth = As*Fy / (0.85*f'c*bet	ff) = 0.766	9 in.			Fig R21.2.2a
c = depth to neutral axis = a / β =	0.929	6 in.			
Mn = Nominal Moment Cap = As*Fy*(d-a/2)/1	2 = 2710	9 ftlb.			
φ=	0.	9			
φMn = Ultimate Moment Cap =	24397.	7 ftlb.			
check against ρ min =	0.003	3 ;	> φ min		
check against ρ max =	0.015	0 <== determi	ne rho max eqn		
lf below ρ min, multiply As x 1.33 =	0.780	3 in^2			9.6.1.3
if below ρ min, multiply phiMn x 0.75 =	18298.2	9 lb-ft			
	in phiMp x $0.75 = 1/1.33$ x	nhiMn = reduc	tion if the < the min)	9613
	(note: code cove the min per	ad not be eatief	fied if	,	0.0.1.0
		if the min is no			
	AS > 1.55 As Required, so		a net, can		
	simply reduce capacity by 1/	4 or multiply x	0.75)		
Mu = Mmax (U) Sd = 15519 lb ft	< fMn - Wall Flexure OK	Utilization =	• 0.85		
	Note:				
	4500 psi is minimum cor	crete strengt	th for concrete	Table 4.3.1	
	with low permeability (c	oncrete is coa	ated		
	is coated as directed by	Aquaworks)			
Check ρ balanced and ϵ t=.005 limits:					
β= Max of ((0.85-0.05*(f'c-4000)/1000,0.65)) = 0.825	0		10.2.7.3	
εty = tension yield strain = fy / Es	0.002	1 <== Es = 29	9,000,000 psi	R10.3.2	
εc = balanced concrete strain =	0.003	0		R10.3.2	
$\epsilon t = actual tension strain = ((d-c) / c)*strain strain $	c 0.028	1		R10.3.3	
ρ temp = temp and shrink steel = 0.0018	<== if Fy<60,000 psi, .002 -or	0018 * 60,000ps	si / Fy	Table 7.12.2.1	
As(temp)= (ρ temp * beff * h) = 0.2592	in^2				
ρ bal = (0.85*f'c* β /Fy)*(0.003/(0.003+etv)	0.031	1 <== balan	ced steel ratio	R10.3.3	
0.75(ρ bal)=	0.023	3		R10.3 5	
$\rho t = (.85^{\circ}\beta^{\circ}f'c / Fv)^{\circ}(0.003/(0.008))$	0.019	7 <== Max rein	f. Ratio, when steel st	rain >= 005	
As $(max) = (ot * beff * d) =$	2 279	0 in^2		R10 3 5	
the best of	2.270	- III L			
$a_{min}(b) = 200/f_{v}$	0 003	2			9612
$p \min(a) = 200/19 = 0$ $a \min(a) = 3*(f'a) = 0.5/5y = 0.05/5y = 0.0$	0.005	1		10 5 1	0.612
$p \min (a) = 3 (i c) (0.3) Fy = 0$ $p \min (a) = a \operatorname{rester} of a \min(a) ar a \min(b) = 0$	0.003	4 / / N/:~	roinf Batia	10.3.1	5.0.1.2
$p \min - greater of p \min(a) of p \min(b) = As (min) = (a min * boff * d) = (b min) = (b min * boff * d) = (b min) = (b mi$	0.003	4 <== iviin.	reini. Kaulo		0613
As $(mn) - (p mn)$ ben $u = 0$	0.387	+ in.z <== unle:	ss As > 1.33™As reqd p	Jei code	5.0.1.5

				Date:	11/6/2023		
				Job:	2310219(4) - F	hippsburg W	WTP
				Subject	Wall design		
						Referenc	e
					-	ACI 350-06	ACI 318-14
4. Check Shear Capacity							
**neglects Vs (shear reinfore	cement)						
Vc = 2 * λ * (f'c)^.5 * b * d =	:		15496	lbs			11.2.1.1
φ = 0.75			11621.963				9.3.2
♦Vc/2 = **For Beam Design ((h > 10 in.)	Г	5811	lbs / ft			11.4.6.1
Check if shear capacity is OK v	without considering	shear reinforce	ement				
(Envorinmental durability factor d	does not apply to con	crete shear capa	city)			9.2.6	
Vu = Vmax (U) = 10	0710.4 lbs			Utilization	= 0.92		
U (Fluid Pressure) =	1.6	< Vu - Wall S	hear NO G	DOD		9.2.1	
		See Below fo	or Reinforce	ment Che	ck		
	12 :=	(#6 bar)	0	0	in chooing		

Note: Sludge pressure against wall is greater than backfill pressure against wall Therefore, the above designs are applicable for interior and exterior walls See below for short wall and tall wall locations

			Date:	11/6/2023		
			Jop:	2310219(4) - P	hippsburg V	VWTP
			Subject	Wall design		
Tank Wall with conco	ntrated load					
	Mall with to	IIOIII LID BEAIVI allu	I/OI CONTAINER			
Assume worst case locatio	in - wall with ta	ink pressure at full wall n	reight and supporting container			<control< td=""></control<>
concentrated load. Also, fo		tank is empty and soil is ba	the tank sludge pressure centre			
Find Container Conco	ntrated load	tarik sludge pressure, so	the tank sludge pressure contro)15		
arge container Conce	(40 ft long y	9 ft wido y 9 5 ft toll)	Small container:	(10 ft long 8 ft	twide 05f	t tall)
		on while x 9.5 m tail)	Sinai container.		1 wide, 9.5 ii	
40 8	0.5			10	Q	9.5
40 0	9.J	42075 lbc	DI -	10791	U lbc	9.5
(wet weight)		43973 IDS	DL -	10781	nof	
provided by Aquaworks)	LL - CI -	77 psf	LL - Cl -	77	psi	
		77 psi	SL =	20	psi	
	NL -	20 psi	NL -	20	psi	
	VVIIIUdown —	9.6 psi	VVIIIUdown -	9.6	psi	
	VVIIIQup =	-36.4 pst		-36.4	psr	
· · · · · · · · · · · · · · · · · · ·		(Average uplift of co	orner and end zone pressu	ires)		
Assume container is s	supported at	4 corner and load is	distributed equally to eac	cn corner*		
Lorner Loads:			At Beam, 2 container co	orners at same	point:	
	DL =	10993.75 lbs	DL =	13689	lbs 	
	LL =	4800 lbs	LL =	6000	lbs	
	SL =	6160 lbs	SL =	7700	lbs	
	RL =	1600 lbs	RL =	2000	lbs	
	Winddown =	768 lbs	Wind _{down} =	960	lbs	
	Windup =	-2912 lbs	Wind _{up} =	-3640	lbs	
			* Actually, container is shimi	med along length a	bove	
Nind overturning	w =	21.1 psf	perpendicular walls, so this o	calculation is VERY	conservative	
arge Container	T = C =	2380 lbs				
Small Container	T = C =	595				
Due to container location,	do not double	load at center beam. Jus	t use single container overturni	ng load		
Tota	l Wside =	2380 lbs	(vertical load from wind	d overturning o	n Containers	5)
ASD Load Combinatio	ons			If (2) Containe	rs	
1 D + L		15794 lbs		19689	lbs	
2 D + S		17154 lbs		21389	lbs	
3 D + 0.75(L	+ S)	19214 lbs		23964	lbs	
4 D + W		11762 lbs		14649	lbs	
5 D + 0.75(L	+ S + W)	19790 lbs	<controls< td=""><td>24684</td><td>lbs</td><td><controls< td=""></controls<></td></controls<>	24684	lbs	<controls< td=""></controls<>
6 0.6D - W		3684 lbs	No Net Uplift	4573	lbs	No Net Uplift
			1 container	-		
Maximum Ver	rtical Concer	ntrated Load from lic	& Containers= 19790	24684		
		(This is p	oint load on beam) - see b	peam design for	reaction to	wall
		Reaction	n at Wall = 49866	lbs		

Job: 2310219(4) - Phippsburg WWT	Р
Subject Wall design	
Reference	
ACI 350-06 ACI	318-14
Wall with compression from beam bearing	
$\phi Pn = \phi \alpha [0.85 f'c (Ag - Ast) + fy Ast]$ 10.3.7.2	
$\phi = 0.65$	
$\alpha = 0.80$	
Ast = 0.2Ag	
f'c = 4500 psi	
fy = 60,000 psi	
Pu = 49866 lbs	
Ag = 19.38 in^2	
Ast = 3.88 in^2 Number of #4 bars: 19.4	
Number of #5 bars: 12.5	
φPn = 151760.2 lbs Number of #6 bars: 8.8	
Column size: 24 x 12 Use (8) #6 bars	
a 12 in	
b 24 in 7/0	
clear distance 2 in	
bar diameter 0.75 in #6	
#bars along long face 4 bars	
stirrup diameter 0.375 in #3	
aggregate size 0.75 in	
#3 Tie spacing 12 in 25.7.2.1	
Bar clear spacing (a)= 6.5 in	
Bar clear spacing (b)= 6 in ties needed for every other vertical bar 25.7.2.3	
Use #3 stirrups@ 12 inches o.c.	

03 LID

123 north martin luther king jr. boulevard tulsa, oklahoma 74103 918.584.5858 · 800.364.5858 wallace.design

						Date.	11/7/2025		
						Job:	2310219(4) - P	hippsburg WW	/TP
						Subject:	Concrete Lid D	esign	
								Reference	
Lid Desi	gn							ACI 350-06	ACI 318-14
Typical s	span - away fro	om openin	gs and cont	ainer suppor	rt locations				
			-						
	Thickness =	12	in						
	Clear cover =	2	in						
	bar area =	0.6	in^2	# 7 bar					
ba	r diameter =	0.875	in	# 7 bar					
	DL =	150	psf						
	LL =	60	psf						
(For simp	olicity, assume l	L and SL ov	ver full span,	even though	not under sh	ipping conta	ner)		
	SL =	84.7	' psf	(Non-drift)					
	Winddown=	9.6	psf						
Use 12"	wide strip for	design	-						
		=1							
Factored	d Loads * Sd (s	ee below f	for Sd facto	<u>r)</u>			without Sd	9.2.1	
(9-2)	1.2DL+1.6L	L+0.5SL		687.2	plf		318.35		
(9-3)	1.2DL+1.65	SL+1.0LL		687.2	plf		375.52		
(9-4)	1.2DL+1.6V	W+1.0LL+0.	.5SL	709.6	plf		297.71		
(9-5)	1.2DL+1.0E	+1.0LL+0.2	2S	705.4	plf		264.74		
						0.05	2		
	Use w =	709.6	plf			Seismic vert	ical component		
Modifica	ation Factor us	sed in abov	ve load calc	ulations					
Modifica Sd = ¢ Fy γ fs	ation Factor us $\phi Fy/(\gamma fs)$ $\phi = 0.9$ $\gamma = 60,000$ $\gamma = 0$ factor $\gamma = 20,000$	sed in abov psi psi	ve load calc (modificat (Steel yield (Ultimate (Steel dire	ulations ion factor fo d strength) Load Factor (ct hoop and	r tension-cc (LRFD)) tensile stre	ntrolled sea	tion)	R9.2.6	
Modifica Sd = ¢ Fy γ fs	ation Factor us $\phi F \gamma / (\gamma f s)$ $\phi = 0.9$ $\gamma = 60,000$ $\gamma = 0$ factor s = 20,000	psi	ve load calc (modificat (Steel yield (Ultimate (Steel dire	ulations ion factor fo d strength) Load Factor (ct hoop and	r tension-cc (LRFD)) tensile stree	ntrolled see	tion)	R9.2.6	
Modifica Sd = ¢ Fy γ fs	ation Factor us ϕ Fy/(γ fs) ϕ = 0.9 γ = 60,000 γ = U factor σ = 20,000 σ = $\frac{P_{1}(c\Delta 2 + d\Delta 2)}{c}$	psi psi 320 (2+dh (2)/22	ve load calc (modificat (Steel yield (Ultimate (Steel dire	ulations ion factor fo d strength) Load Factor ct hoop and	r tension-cc (LRFD)) tensile stre For "No	ntrolled see	rtion) nment exposure:	R9.2.6 10.6.4.1	
Modifica Sd = ¢ Fy ງ fs	ation Factor us $\phi Fy/(\gamma fs)$ $\phi = 0.9$ $\phi = 0.9$	sed in abov psi 320 (2+db/2)^2	ve load calc (modificat (Steel yield (Ultimate (Steel dire 2)^0.5	ulations ion factor fo d strength) Load Factor (ct hoop and	r tension-cc (LRFD)) tensile stre For "No ting to be ap	ntrolled set ngth) rmal" enviro plied to cond	tion) nment exposure: rete surface, per	R9.2.6 10.6.4.1	
Modifica Sd = ¢ Fy ĵ fs fs max	ation Factor us $\phi Fy/(\gamma fs)$ $\phi = 0.9$ $\phi = 60,000$ $\gamma = 0 \text{ factor}$ f = 20,000 $f = \frac{1}{B} (s^2 + 4)$	psi psi 320 (2+db/2)^2	ve load calc (modificat (Steel yiel (Ultimate (Steel dire 2)^0.5	ulations ion factor fo d strength) Load Factor (ct hoop and - Coa Aqua	r tension-cc (LRFD)) tensile stree For "No ting to be ap aworks, Shere	ntrolled see ngth) rmal" enviro plied to cono vin Williams	nment exposure: rete surface, per Dura-Plate 6000.	R9.2.6 10.6.4.1	
Modifica Sd = ¢ Fy ĵ fs fsmax	ation Factor us ϕ Fy/(γ fs) $\phi = 0.9$ $\gamma = 60,000$ $\gamma = 0.9$ $\gamma = 0.9$	psi psi <u>320</u> (2+db/2)^2	ve load calc (modificat (Steel yiel (Ultimate (Steel dire 2)^0.5	ulations ion factor fo d strength) Load Factor (ct hoop and - Coa Aqua	r tension-cc (LRFD)) tensile stree For "No ting to be ap aworks, Shen There	ntrolled sea ngth) rmal" enviro plied to cono win Williams fore environ	t ion) nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL	R9.2.6 10.6.4.1 10.6.4.4	
Modifica Sd = ¢ Fy ĵ fs fs db	ation Factor us $\phi Fy/(\gamma fs)$ $\phi = 0.9$ $\gamma = 60,000$ $\gamma = 0.4$ $\gamma = 0.9000$ $\gamma = 0.9000$ $\gamma = 0.9000$ $\gamma = 0.9000$ $\sigma = -0.875$ $\sigma = 0.875$ $\sigma = 0.875$	psi psi <u>320</u> (2+db/2)^2	ve load calc (modificat (Steel yield (Ultimate (Steel dire 2)^0.5 # 7 bar	ulations ion factor fo d strength) Load Factor (ct hoop and - Coa Aqua	r tension-cc (LRFD)) tensile stre For "No ting to be ap aworks, Shen There	ntrolled sea ngth) rmal" enviro plied to cono win Williams fore environ	nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL	R9.2.6 10.6.4.1 10.6.4.4	
Modifica Sd = ¢ Fy ĵ fs db s fsmax	ation Factor us $\phi Fy/(\gamma fs)$ $\phi = 0.9$ f = 60,000 f = 0.9 f = 20,000 f = 20,000 f = 1.35 $\phi = 0.875$ f = 9 f = 23159	psi psi <u>320</u> (2+db/2)^2 in spacing psi	ve load calc (modificat (Steel yield (Ultimate (Steel dire 2)^0.5 # 7 bar	ulations ion factor fo d strength) Load Factor (ct hoop and - Coa Aqua	r tension-cc (LRFD)) tensile stree For "No ting to be ap aworks, Shen There	ntrolled sea ngth) rmal" enviro plied to cono win Williams fore environ	tion) nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL	R9.2.6 10.6.4.1 10.6.4.4	
Modifica Sd =	ation Factor us $\phi Fy/(\gamma fs)$ $\phi = 0.9$ $\phi = 0.875$ $\phi = 0.9000$	sed in abov psi <u>320</u> (2+db/2)^2 in in spacing psi nsi	ve load calc (modificat (Steel yield (Ultimate (Steel dire 2)^0.5 # 7 bar (for flexur (for flexur	ulations ion factor fo d strength) Load Factor fo ct hoop and Coa Aqua al stress) and boon te	r tension-cc (LRFD)) tensile stree For "No ting to be ap aworks, Shen There	introlled sea ngth) rmal" enviro plied to cono win Williams fore environ	tion) nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL	R9.2.6 10.6.4.1 10.6.4.4 10.6.4 9.2.6.2	
Modifica Sd =	ation Factor us $\phi Fy/(\gamma fs)$ $\phi = 0.9$ $\phi = 0.875$ $\phi = 0.975$ $\phi = 0.975$	sed in abov psi 320 (2+db/2)^2 in in spacing psi psi nsi	ve load calc (modificat (Steel yield (Ultimate (Steel dire 2)^0.5 # 7 bar (for flexur (for flexur (for direct (for shear	ulations ion factor fo d strength) Load Factor (ct hoop and - Coa Aqua al stress) and hoop te stress carrie	r tension-cc (LRFD)) tensile stre For "No ting to be ap aworks, Shen There ensile stress d by shear r	ntrolled see ngth) rmal" enviro plied to cono win Williams fore environ in normal e einforceme	tion) nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL xposure) nt)	R9.2.6 10.6.4.1 10.6.4.4 10.6.4 9.2.6.2 9.2.6.2	
Modifica Sd = ¢ Fy ĵ fs a b db s fsmax	ation Factor us $\phi Fy/(\gamma fs)$ $\phi = 0.9$ $\phi = 20,000$ $\phi = -0.875$ $\phi = 0.875$ $\phi = 0.900$ $\phi = 0.9000$ $\phi = 0.9000$	psi psi 320 (2+db/2)^2 in psi psi psi psi	ve load calc (modificat (Steel yield (Ultimate (Steel dire 2)^0.5 # 7 bar (for flexur (for flexur (for shear	ulations ion factor fo d strength) Load Factor (ct hoop and - Coa Aqua al stress) and hoop te stress carrier	r tension-cc (LRFD)) tensile stre For "No ting to be ap aworks, Shen There ensile stress d by shear r	introlled sea ngth) rmal" enviro plied to cono vin Williams fore environ in normal e einforceme T	rtion) nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL «posure) nt)	R9.2.6 10.6.4.1 10.6.4 10.6.4 9.2.6.2 9.2.6.4	
Modifica Sd = ¢ Fy ĵ fs a b db s fsmax Sd Fact	ation Factor us $\phi Fy/(\gamma fs)$ p = 0.9 r = 0.9 r = 0.9 r = 0.9 r = 20,000 r = 20,000 r = 20,000 r = 1.35 r = 0.875 r = 23158 20000 24000 or - Bending r = 54	psi psi 320 (2+db/2)^2 in psi psi psi psi	ve load calc (modificat (Steel yiek (Ultimate (Steel dire 2)^0.5 # 7 bar (for flexur (for flexur (for shear	ulations ion factor fo d strength) Load Factor (ct hoop and - Coa Aqua al stress) and hoop te stress carrier Sd Factor	r tension-co (LRFD)) tensile stree For "No ting to be ap aworks, Shen There onsile stress d by shear r or - Shear	introlled sea ngth) rmal" enviro plied to cond win Williams fore environ in normal e einforceme	rtion) nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL kposure) nt)	R9.2.6 10.6.4.1 10.6.4 10.6.4 9.2.6.2 9.2.6.4	
Modifica Sd = (Fy) fs max B db s fsmax Sd Fact U facto	ation Factor us $\phi Fy/(\gamma fs)$ p = 0.9 r = 0.9 r = 0.9 r = 20,000 r = 20,000 r = 20,000 r = 1.35 p = 0.875 r = 23158 20000 24000 for - Bending r = Sd	psi psi 320 (2+db/2)^2 in in spacing psi psi psi	ve load calc (modificat (Steel yiek (Ultimate (Steel dire 2)^0.5 # 7 bar (for flexur (for flexur (for shear	ulations ion factor fo d strength) Load Factor (ct hoop and Coa Aqua al stress) and hoop te stress carrier Sd Factor U factor	r tension-co (LRFD)) tensile stree For "No ting to be ap aworks, Shen There ensile stress d by shear r or - Shear Sd	introlled sea	rtion) nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL kposure) nt)	R9.2.6 10.6.4.1 10.6.4 9.2.6.2 9.2.6.4	
Modifica Sd = (Fy) fs fsmax B db s fsmax Sd Fact U facto 1.2	ation Factor us $\phi Fy/(\gamma fs)$ p = 0.9 r = 0.9 r = 0.9 r = 20,000 r = 20,000 r = 20,000 r = 1.35 p = 0.875 r = 0.875 r = 0.875 r = 23158 20000 24000 r = 8ending r = 8d 1.94	psi psi 320 (2+db/2)^2 in in spacing psi psi psi psi 2.332	ve load calc (modificat (Steel yiek (Ultimate (Steel dire 2)^0.5 # 7 bar (for flexur (for flexur (for shear	ulations ion factor fo d strength) Load Factor (ct hoop and Coa Aqua al stress) and hoop te stress carrier Sd Factor U factor 1.2	r tension-cc (LRFD)) tensile stree For "No ting to be ap aworks, Shen There ensile stress d by shear r or - Shear Sd 1.56	introlled see ngth) rmal" enviro plied to cono vin Williams fore environ in normal e einforceme 1.87	nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL xposure) nt)	R9.2.6 10.6.4.1 10.6.4 9.2.6.2 9.2.6.4	
Modifica Sd = (Fy) fs fsmax db s fsmax Sd Fact U facto 1.2 1.6	ation Factor us $\phi Fy/(\gamma fs)$ p = 0.9 r = 60,000 r = 0.9 r = 20,000 r = 20,000 r = 20,000 r = 1.35 p = 0.875 p = 0.875 p = 0.875 p = 0.875 p = 23158 20000 24000 r = 8 r = 8 r = 1.45 r = 1.45	sed in abov psi 320 (2+db/2)^2 in in spacing psi psi psi 2.332 2.332	ve load calc (modificat (Steel yiek (Ultimate (Steel dire 2)^0.5 # 7 bar (for flexur (for flexur (for shear	ulations ion factor fo d strength) Load Factor fo ct hoop and Coa Aqua al stress) and hoop te stress carried Sd Factor U factor 1.2 1.6 1 4	r tension-co (LRFD)) tensile stree For "No ting to be ap aworks, Shen There onsile stress d by shear r or - Shear Sd 1.56 1.17	introlled see ngth) rmal" enviro plied to cono vin Williams ifore environ in normal e einforceme 1.87 1.87	nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL xposure) nt)	R9.2.6 10.6.4.1 10.6.4 9.2.6.2 9.2.6.4	
Modifica Sd =	ation Factor us $\phi Fy/(\gamma fs)$ p = 0.9 r = 60,000 r = 0.9 r = 20,000 r = 20,000 r = 1.35 p = 0.875 r = 23158 20000 24000 for - Bending r = Sd 1.94 1.46 1.67 4.55	sed in abov psi 320 (2+db/2)^2 in in spacing psi psi psi 2.332 2.332 2.332	ve load calc (modificat (Steel yield (Ultimate (Steel dire 2)^0.5 # 7 bar (for flexur (for flexur (for shear	ulations ion factor fo d strength) Load Factor fo ct hoop and Coa Aqua al stress) and hoop te stress carried Sd Factor U factor 1.2 1.6 1.4	r tension-cc (LRFD)) tensile stree For "No ting to be ap aworks, Shen There on Sile stress d by shear r or - Shear Sd 1.56 1.17 1.34	introlled see ngth) rmal" enviro plied to cond vin Williams fore environ in normal e einforceme 1.87 1.87	tion) nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL xposure) nt)	R9.2.6 10.6.4.1 10.6.4 9.2.6.2 9.2.6.4	
Modifica Sd =	ation Factor us ϕ Fy/(γ fs) $\phi = 0.9$ f = 60,000 f = 0.9 f = 0.9 f = 0.9 f = 0.9 f = 0.9 f = 20,000 f = 1.35 $\phi = 0.875$ $\phi = 0.875$ $\phi = 0.875$ $\phi = 0.875$ $\phi = 0.875$ $\phi = 23158$ 20000 24000 or - Bending or Sd 1.94 1.46 1.67 4.66 2.222	sed in abov psi 320 (2+db/2)^2 in in spacing psi psi 2.332 2.332 2.332 2.332 2.332	ve load calc (modificat (Steel yield (Ultimate (Steel dire 2)^0.5 # 7 bar (for flexur (for flexur (for direct (for shear	ulations ion factor fo d strength) Load Factor fo ct hoop and Coa Aqua al stress) and hoop te stress carried Sd Factor U factor 1.2 1.6 1.4 0.5	r tension-cc (LRFD)) tensile stree For "No ting to be ap aworks, Shen There ensile stress d by shear r or - Shear Sd 1.56 1.17 1.34 3.75	introlled see ngth) rmal" environ plied to cond win Williams fore environ in normal e einforceme 1.87 1.87 1.87	tion) nment exposure: rete surface, per Dura-Plate 6000. ment is NORMAL kposure) nt)	R9.2.6 10.6.4.1 10.6.4 9.2.6.2 9.2.6.4	

		Date:	11/7/2023		
		Job:	2310219(4) - P	hippsburg WV	/TP
		Subject:	Concrete Lid D	esign	
			I	Reference	
Span = (Use multi-span condition - 13-2	(" - 22-0" - 17'-6")			ACI 350-06	ACI 318-14
(add thickness of interior walls to span in Ri	SA model)				
Single-Span (N-S) = 15.25					
Ivpical multi-span					
Sa Mu = $WI^2/8 = 31369$ lb ft	(See RISA output)				
Vu = WI/2 = 8375 lbs	(See RISA output)				
Compare continuous "beam" across multiple spans w loading conditions below. Choose largest values for n	vith simple span and oth noment and shear	ler			
Check simple span Member section forces:	(Span is	clear span + half the	e wall thickness)		
$M Sd = wl^2/8 = 20627 lb ft$	More efficient to use Si	imple-span - detail a	iccordingly		
V Sd = wl/2 = 2863 lbs	1.10	(a			
For Simple span with container in place and	snow drifts:	(See Risa R	esults)		
M Sd = 31887 lb ft					
V Sd = 9327 lbs					
For 3-Span slab adjacent to container with s	now drift	(See Risa R	esults)		
M Sd = 43790 lb ft					
V Sd = 11673 lbs					
<u>Lid design</u>					
Lid thickness = 12 in	As =	0.8 in^2 <	- # 7 bar		
Clear cover = 2 in	Fy = 60	,000 psi	at	7.7.1	
Bar diameter = 0.875 in	f'c = 4	4500 psi	9	Table 4.2.2	
d = 9.56 in	b =	12 in	in spacing		
Check Lid Flexure Mn > Mu	_				
$\rho \min = 0.00333 \le e rho$	min calcs below (For Slal	bs rhomin is T&S Ste	el)		Table 7.6.1.1
$\rho = As / (b^*d)$ 0.00697 <== If ρ is less	ss than ρ min, see below				
See Table 21.2.2 For Strain Boundaries when (et) is co	ompression controlled, tra	ansition or tension co	ntrolled		Tbl. 21.2.2
No Compression Control	led If ct < ctv				
No Transition Zone If e.	< e. < 0.005				
Ves Tension Controlled S	(et) = or > 0.000	5			
		0			
** Solve for phiMn Based on Whitney Stress	Block				Fig R21.2.2a
a = stress block depth = As*Fy / (0.85*f'c*b	eff) = 1.0	0458 in.			
c = depth to neutral axis $= a / \beta =$	1.2	2676 in.			
Mn = Nominal Moment Cap = As*Fy*(d-a/2)	/12 = 36	6158 ftlb.			
φ=		0.9			21.2.1
φMn = Ultimate Moment Cap =	32	2543 ftlb.		R10.3.5	
check against ρ min =	0.0	0033 <	ρ		9.6.1.3
check against ρ max =	0.0	0150 <== determine	e rho max eqn		
lf below ρ min, multiply As x 1.33 =	1.(0640 in^2			9.6.1.3
if below ρ min, multiply phiMn x 0.75 =	24	4407 lb-ft			
	in.	3 x ∳Mn = reduction i	fρ < ρ min)		
	(note: code says ρ min r	need not be satisfied	if		
	As > 1.33 * As Required	l, so if ρ min is not m	et, can		
	simply reduce capacity b	by 1/4 or multiply x 0	.75)		
φMn = Ultimate Moment Cap =	3254	2.65 lb-ft			
Mu (Sd) = 31887 lb ft	< fMn - Lid Flexure O	0K Utilization =	0.98		
	Note:				
	4500 psi is minimum	concrete strengt	n for concrete	Table 4.3.1	
	with low permeabilit	y (concrete is coa	ted		
	is coated as directed	d by Aquaworks)			

	Date: 11/7/2023		
	Job: 2310219(4) - P	hippsburg WWTP	
	Subject: Concrete Lid D	esign	
		Reference	
		ACI 350-06 ACI 318-1	4
Check ρ balanced and et=.005 limits:			
β = Max of ((0.85-0.05*(f'c-4000)/1000,0.65)) = (0.85-0.05*(f'c-4000)/1000,0.65)) = (0.85-0.05*(f'c-4000)/1000,0.65))	0.8250	10.2.7.3	
ety = tension yield strain = fy / Es (0.0021 <== Es = 29,000,000 psi	R10.3.2	
εc = balanced concrete strain =	0.0030	R10.3.2	
$\epsilon t = actual tension strain = ((d-c) / c)*strain sc$	0.0196	R10.3.3	
ρ temp = temp and shrink steel = 0.0018 <== if Fy<60,000 ps	si, .002 -or0018 * 60,000psi / Fy	Table 7.12.2.1	
As(temp)= (ρ temp * beff * h) = 0.2592 in^2			
ρ bal = (0.85*f'c* β /Fy)*(0.003/(0.003+ety) (0.003+ety)	0.0311 <== balanced steel ratio	R10.3.3	
$0.75(\rho \text{ bal})=$ (0.0233	R10.3.5	
$\rho t = (.85^{*}\beta^{*}f'c / Fy)^{*}(0.003/(0.008)) $	0.0197 <== Max reinf. Ratio, wher	steel strain >= .005	
As (max) = (ρt * beff * d) =	2.2632 in^2	R10.3.5	
ρ min (b) = 200/fy=	0.0033	9.6.1.2	
$\rho \min(a) = 3^* (f'c)^{0.5}/Fy=$	0.0034	10.5.1 9.6.1.2	
ρ min.= greater of ρ min(a) or ρ min(b) =	0.0034 <== Min. reinf. Ratio		
As (min)= (ρ min * beff * d) =	0.3849 in.2 <== unless As > 1.33*As	reqd per code 9.6.1.3	
4. Check Shear Capacity			
**neglects Vs (shear reinforcement)			
Vc = 2 * \(\lambda\) * (f'c)^.5 * b * d =	15395 lbs	22.5.5.1	
φ = 0.75 φVc =	11546 lbs	21.2	
φVc/2 = ★*For Beam Design (h > 10 in.)	5773 lbs / ft	11.4.6.1	
Check if shear capacity is OK without considering shear reinforcement	nt		
(Environmental durability factor does not apply to concrete shear capacity)		9.2.6	
Vu = Vmax (U) = 9327 lbs < Vu - Slab Shear NO	GOOD Utilization = 0.81		
See Below for Rein	forcement Check	9.2.1	
Vs required = Sd (Vu-fVc) = -5175.37 lbs No shear re	inforcement required	R9.2.6.4	
Use 12 in slab w/ #7 bar	@ 9 in spacing		

Node Coordinates

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
1	N1	0	0	0	Yes
2	N2	13.667	0	0	
3	N3	36.667	0	0	
4	N4	54.667	0	0	

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]
1	N4		Reaction	Reaction	
2	N2		Reaction	Reaction	
3	N3		Reaction	Reaction	
4	N1	Reaction	Reaction	Reaction	Reaction

Member Distributed Loads (BLC 1 : DL)

	Member Label	Direction	Start Magnitude [lb/ft, F, psf, k-ft/ft]	End Magnitude [lb/ft, F, psf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M1	Y	-150	-150	0	%100
2	M2	Y	-150	-150	0	%100
3	M3	Y	-150	-150	0	%100

Member Distributed Loads (BLC 2 : LL)

	Member Label	Direction	Start Magnitude [lb/ft, F, psf, k-ft/ft]	End Magnitude [lb/ft, F, psf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M1	Y	0	0	0	%100
2	M2	Y	0	0	0	%100
3	M3	Y	0	0	0	%100

Member Distributed Loads (BLC 3 : SL)

	Member Label	Direction	Start Magnitude [lb/ft, F, psf, k-ft/ft]	End Magnitude [lb/ft, F, psf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M1	Y	-220.0	-220.0	5.5	%100
2	M2	Y	-220.0	-220.0	0	%100
3	M3	Y	-220.0	-220.0	0	%100
4	M1	Y	-78.0	-78.0	0	5.5

Member Distributed Loads (BLC 4 : Wind)

	Member Label	Direction	Start Magnitude [lb/ft, F, psf, k-ft/ft]	End Magnitude [lb/ft, F, psf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M1	Y	-9.6	-9.6	0	%100
2	M2	Y	-9.6	-9.6	0	%100
3	M3	Y	-9.6	-9.6	0	%100

Basic Load Cases

	BLC Description	Category	Distributed
1	DL	DL	3
2	LL	LL	3
3	SL	SL	4
4	Wind	WL	3

Load Combinations

	Description	Solve	P-Delta	BLC	Factor								
1	DL Only	Yes	Y	DL	2.522								
2	1.2DL + 1.6LL + 0.5SL	Yes	Y	DL	2.522	LL	2.522	SL	2.522				
3	1.2DL + 1.6SL + 1.0LL	Yes	Y	DL	2.522	LL	2.522	SL	2.522				
4	1.2DL + 1.6LL + 0.5W(down)	Yes	Y	DL	2.522	LL	2.522	WL	2.522				
5	1.2DL + 1.6SL + 0.5W(down)	Yes	Y	DL	2.522	SL	2.522	SLN		WL	2.522		
6	without Sd1			DL	1.2	SL	1.6	WL	0.5			L	
7	1.2DL + 1.0W(down) + 0.5LL	Yes	Y	DL	2.522	WL	2.522	LL	2.522				
8	1.2DL + 1.0W(down) + 0.5LL + 0.5SL	Yes	Y	DL	2.522	WL	2.522	LL	2.522			SL	2.522
9	without Sd			DL	1.2	WL	1	LL	0.5			SL	0.5
10	0.9DL + 1.0W(down)	Yes	Y	DL	2.522	WL	2.522						

Envelope Member Section Forces

	Member	Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	y-y Moment[k-ft]	LC	z-z Moment[k-ft]	LC
1	M1	1	max	0	10	2.594	8	0	10	0	10	0	10	0	10
2			min	0	1	1.59	1	0	1	0	1	0	1	0	1
3		2	max	0	10	0.488	8	0	10	0	10	0	10	-3.225	1
4			min	0	1	0.298	1	0	1	0	1	0	1	-5.265	5
5		3	max	0	10	-0.995	1	0	10	0	10	0	10	-2.034	1
6			min	0	1	-2.1	5	0	1	0	1	0	1	-3.015	5
7		4	max	0	10	-2.287	1	0	10	0	10	0	10	9.874	8
8			min	0	1	-5.445	5	0	1	0	1	0	1	3.573	1
9		5	max	0	10	-3.58	1	0	10	0	10	0	10	34.191	8
10			min	0	1	-8.789	5	0	1	0	1	0	1	13.597	1
11	M2	1	max	0	10	10.839	8	0	10	0	10	0	10	34.191	8
12			min	0	1	4.21	1	0	1	0	1	0	1	13.597	1
13		2	max	0	10	5.211	8	0	10	0	10	0	10	-4.359	1
14			min	0	1	2.035	1	0	1	0	1	0	1	-11.951	5
15		3	max	0	10	-0.14	1	0	10	0	10	0	10	-9.806	1
16			min	0	1	-0.417	5	0	_ 1	0	1	0	_ 1	-25.732	5
17		4	max	0	10	-2.315	1	0	10	0	10	0	10	-2.747	1
18			min	0	1	-6.045	5	0	1	0	1	0	_ 1	-7.152	5
19		5	max	0	10	-4.491	1	0	10	0	10	0	10	43.79	8
20			min	0	1	-11.673	5	0	1	0	1	0	1	16.821	1
21	M3	1	max	0	10	11.242	8	0	10	0	10	0	10	43.79	8
22			min	0	1	4.339	1	0	1	0	1	0	1	16.821	1
23		2	max	0	10	6.837	8	0	10	0	10	0	10	3.112	8
24			min	0	1	2.637	1	0	1	0	1	0	1	1.125	1
25		3	max	0	10	2.433	8	0	10	0	10	0	10	-6.911	1
26	_		min	0	1	0.934	1	0	1	0	1	0	1	-17.746	5
27		4	max	0	10	-0.768	1	0	10	0	10	0	10	-7.286	1
28			min	0	1	-1.972	5	0	1	0	1	0	1	-18.783	5
29		5	max	0	10	-2.47	1	0	10	0	10	0	10	0	10
30			min	0	1	-6.376	5	0	1	0	1	0	1	0	1

Envelope Node Reactions

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N4	max	0	10	6.376	8	0	10	0	10	0	10	0	10
2		min	0	1	2.47	1	0	1	0	1	0	1	0	1
3	N2	max	0	10	19.628	8	0	10	0	10	0	10	0	10
4		min	0	1	7.79	1	0	1	0	1	0	1	0	1
5	N3	max	0	10	22.915	8	0	10	0	10	0	10	0	10
6		min	0	1	8.83	1	0	1	0	1	0	1	0	1

Envelope Node Reactions (Continued)

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
7	N1	max	0	10	2.594	8	0	10	0	10	0	10	0	10
8		min	0	1	1.59	1	0	1	0	1	0	1	0	1
9	Totals:	max	0	10	51.513	8	0	10						
10		min	0	1	20.681	1	0	1						

	Date: 11/7/2023		
	Job: 2310219(4) - F	hippsburg WWT	Р
	Subject: Concrete Lid D	Design	
		Reference	
		ACI 350-06	ACI 318-14
Slab section near opening			
Slab Reinf is at 9 in spacing			
Opening width = 6 ft (3 ft on each side of slab strip			
"beam" width = 2.25 ft (slab strip width between openi	ings)		
Sd = 1			
Mu Sd = 71794 lb ft * (Multiply Typical lid Momer	nt by (1/2 opening+beam width)		
Vu = 48967 lbs * (Multiply Typical lid Shear b	y (1/2 opening + beam width)		
* Sd = 1.0 for 2.46	in spacing of #6 bar		
# typical bars in "beam" width =4			
Added bars next to opening = 6 (3 each op	ening)		
Can 10 bars fit in "beam"?			
bar spacing = 2.46 in	BAR SPACING OK		
Minimum spacing = larger of: 1 in			25.2
db = 0.875 in			25.2
agg = 0.75 4/3 dagg = 1 in			25.2
ρ bal = (0.85*f'c*b/Fy)*(0.003/(0.003+ety) 0.0312	1 <== balanced steel ratio		
0.75(p bal)= 0.0233	3		
ety = tension yield strain = fy / Es 0.0022	1 <== Es = 29,000,000 psi		
Total Steel Area = As = 6 in^2 Exceeds As	s (max)		
depth, d = 9.56 in Use	e 4.80 in^2		
width, b = 27 in	(See below for Max As)		
Fy = 60,000 psi	. ,		
f'c = 4,500 psi			
Check Lid Flexure Mn > Mu			
ρ min = 0.00333 <== See rho min calcs below (For Slabs rh	omin is T&S Steel)	Т	able 7.6.1.1
ρ = As / (b*d) 0.02324 <== If ρ is less than ρ min, see below			
See Table 21.2.2 For Strain Boundaries when (ct) is compression controlled, transition	on or tension controlled		Tbl. 21.2.2
No Compression Controlled If et < ety			
No Transition Zone If $\epsilon_{tv} < \epsilon_t < 0.005$			
Yes Tension Controlled Since $(\epsilon t) = or > 0.005$			
			F: D0100
** Solve for philm Based on Whitney Stress Block	_ ·		Fig R21.2.2a
a = stress block depth = As ⁺ Fy / $(0.85^{+}Tc^{-}De\pi)$ = 2.788	/ In.		
c = depth to neutral axis = a / p = 3.3802	2 in.		
$Mn = Nominal Moment Cap = As^{+}Fy^{+}(d-a/2)/12 = 196030$	ο πID.		01.0.1
φ= U.S.	9	540.0.5	21.2.1
φ win = Olumate Moment Cap = 176432	2 πIb.	R10.3.5	0.01.0
check against p min – 0.003.	3 < ρ		9.6.1.3
$\frac{1}{2} \int \int dx dx dx dx dx dx dx $	3 <== determine rho max eqn		0.0.1.0
if below a min, multiply AS $\times 1.33 = 6.3840$	J In^2		9.6.1.3
in below p min, muluply prinvin x 0.75 – 132324	+ ID-IL		
	not be satisfied if		
	if a min is not met can		
	1 or multiply 0.75		
dMn = Ultimate Moment Can =	(I_{1})		
Mu = 71794 1 < fMn - Lid Flevure OK	Utilization = 0.41	ł l	
	0.41		
Use 12 in slab w/ 10 # 7 bar	between openings		

	Date: 11/7/2023	
	Job: 2310219(4) - F	Phippsburg WWTP
	Subject: Concrete Lid D	Design
		Reference
		ACI 350-06 ACI 318-14
Check ρ balanced and π t=.005 limits:		
β= Max of ((0.85-0.05*(f'c-4000)/1000,0.65)) =	0.8250	10.2.7.3
ety = tension yield strain = fy / Es	0.0021 <== Es = 29,000,000 psi	R10.3.2
εc = balanced concrete strain =	0.0030	R10.3.2
$\epsilon t = actual tension strain = ((d-c) / c)*strain sc$	0.0055	R10.3.3
ρ temp = temp and shrink steel = 0.0050		Table 7.12.2.1
As(temp)= (ρ temp * beff * h) = 1.6200 in^2		
ρ bal = (0.85*f'c* β /Fy)*(0.003/(0.003+ ϵ ty)	0.0311 <== balanced steel ratio	R10.3.3
0.75(ρ bal)=	0.0233	R10.3.5
ρt = (.85*β*f'c / Fy)*(0.003/(0.008))	0.0197 <== Max reinf. Ratio, when stee	l strain >= .005
As (max) = (pt * beff * d) =	5.09 in^2	R10.3.5
	Use 8 # 7 bar	
ho min (b) = 200/fy=	0.0033	9.6.1.2
$ ho$ min (a) = 3*(f'c)^0.5/Fy=	0.0034	10.5.1 9.6.1.2
ρ min.= greater of ρ min(a) or ρ min(b) =	0.0034 <== Min. reinf. Ratio	
As (min)= (ρ min * beff * d) =	0.8660 in^2 <== unless As > 1.33*As red	pd per code 9.6.1.3

			Di	ate:	11/7/2023		
			Jo	b:	2310219(4) - P	hippsburg WV	/TP
			Su	ubject:	Concrete Lid D	esign	
						Reference	ž
Modification	Factor used in	n above load ca	lculations			ACI 350-06	ACI 318-14
Sd = ϕF	y/(γfs)						
φ =	0.9	(modific	ation factor for tension-contr	rolled sect	ion)	R9.2.6	
Fv =	60.000 psi	(Steel vi	eld strength)				
γ = fact	tored load/unfacto	ored load	(Ultimate Load Factor (LR	=D))			
fs =	20.000 psi	(Steel di	rect hoop and tensile strengt	h)			
_	-,	(,			
fsmax =	3	20	For "Norm	al" environ	ment exposure:	10641	
B	$(s^2 + 4(2+d))$	h/2)^2)^0 5	Coating to be applie	ed to concr	ete surface ner	20101.112	
D	(3 2 • 1(2 • 0)	0,2, 2, 0.5	Aquaworks Sherwin	Williams F	Jura-Plate 6000		
B =	1 35		Therefor		nent is NORMAL	10644	
db =	0.75 in	#6 bar	mereror	e environn	IEITE IS NORMAL	10.0.4.4	
ub =	4 8125 in cr						
5 = fc =	25055 pci	(for floy	ural stross)			10.6.4	
ISmax –	2000 psi	(for dire	at and been tensile stress in a	ormalay	nocuro)	10.0.4	
	20000 psi	(for the	ct and noop tensile stress in i	forcomor	posurej	9.2.0.2	
	24000 psi		al scress carried by shear rein	norcemer	it)	9.2.0.4	
cd	(min) = 1.0					026	
Sd Fastar D	(11111) = 1.0		Cd Fastar Chasr			9.2.0	
Su Factor - B			Su Factor - Silear	C d * L L			
U factor	50 50	1*U	U factor Sd	Sd*U	1		
1.2	1.28	1.540	1.2 1.88	2.250			
1.6	1.00	1.600	1.6 1.41	2.250			
1.4	1.10	1.540	1.4 1.61	2.250			
0.5	3.08	1.540	0.5 4.50	2.250			
1	1.54	1.540	1 2.25	2.250			
0.2	7.70	1.540	0.2 11.25	2.250			
Noment at m	nd-span		Į₽ ₽			F 2F	с.
iviu =	Pab/L = 123	986.4 ID IT		L. (a=	5.25	μπ G
Snear at supp	ort		a	— a —	D=	7.92	TL CL
vu	= Pa/L = .	24468 105	L	1	r L=	13.17	π
Бу –		60.0	00 pci				
гу – f'c –		00,0	00 psi Boom Boostion -	16609	lbc		
Chock Lid Eloy	uro Ma	4,5 \ Mu	oo psi beann keaction –	10008	105		I
o min =		~ IVIU 00333 < Soo r		n in TRS Sto			Table 7.6.1.1
$\rho = As / (b*d)$	0.0	00000 <== 3ee i	less than a min see below	115 1 00 510	=1)		14010 7.0.1.1
See Table 21 2 2	Eor Strain Bour	daries when (ct) is	compression controlled transition of	r tension cor	trolled		Thl 2122
CCC 1 aDIC 21.2.2		idanico when (et) is					101. 21.2.2
	No Com	pression Cont	olled If ct < ctv				
	No Tran	sition Zone If e	ε _{tu} < ε _t < 0.005				
	Yes Ten	sion Controlled	Since (et) = or > 0.005				1
						l	1

	Date: 11/7/2023	
	Job: 2310219(4) -	Phippsburg WWTP
	Subject: Concrete Lid	Design
** Solve for phiMn Based on Whitney Stress Block		Fig R21.2.2a
a = stress block depth = As*Fy / (0.85*f'c*beff) = 1.43	79 in.	
c = depth to neutral axis = a / β = 1.74	29 in.	
Mn = Nominal Moment Cap = As*Fy*(d-a/2)/12 = 1378	42 ftlb.	
φ= (0.9	21.2.1
φMn = Ultimate Moment Cap = 1240	57 ftlb.	R10.3.5
check against ρ min = 0.00	33 < ρ	9.6.1.3
check against ρ max = 0.00	00 <== determine rho max eqn	
If below ρ min, multiply As x 1.33 = 2.92	60 in^2	9.6.1.3
if below ρ min, multiply φMn x 0.75 = 930	43 lb-ft	
in. φMn x 0.75 = 1 / 1.33 x	$\phi Mn = reduction if \rho < \rho min)$	
(note: code says ρ min nee	ed not be satisfied if	
As > 1.33 * As Required, s	so if $ ho$ min is not met, can	
simply reduce capacity by	1/4 or multiply x 0.75)	
φMn = Ultimate Moment Cap = 124057	<mark>.4</mark> lb-ft	
Mu = 123986.4 lb ft > fMn - Lid flexure NO GOOD	Utilization = 1.00	
Note Point Load at Container Corner is	MUCH smaller than this	
4. Check Shear Capacity Calculation uses		
**neglects Vs (shear reinforcement)		
Vc = 2 * λ * (fc)^.5 * b * d = 426	64 lbs	22.5.5.1
$\phi = 0.75$ $\phi Vc = 319$	98 lbs	21.2
φVc/2 = **For Beam Design (h > 10 in.) 159	99 lbs / ft	11.4.6.1
Check if shear capacity is OK without considering shear reinforcement		
(Environmental durability factor does not apply to concrete shear capacity)		9.2.6
Vu = Vmax (U) = 24468 lbs < Vu - Beam Shear NO GC	OOD	
See Below for Beinford	rement Check	921
		5.2.1
Vs required = Sd (Vu-fVc) = -11600.3 lbs No shear reinfo	rcement required	R9.2.6.4
	i cement required	10.2.0.1
$V_s = \Delta v f v d / s$ 29150 lbs		11 5 6 2
stirrun spacing = $s = 6$ in		11.5.0.2
stirrup bar area = $Av = 0.11 \text{ in}^2$ (2 bars ne	er stirrun in Vs calculation)	
	si still up ill vs culculution,	
minimum spacing = 6.625		11 5 4 1
Sd = 1.153368		
Vn = Vc + Vs/Sd = 67937.99		
φ Vn = 50953.5	Utilization = 0.48	
	0.40	†
Use 16 x 24 w/ 5	#6 bar in beam	
and #3 stirrups@	6 in o.c.	╡ │
Note: T-beam analysis would yield higher canacity, but was not used upless it w	as needed for more precision	
	22	1 1

	Date:	11/7/2023		
	Job:	2310219(4) - P	hippsburg WW	TP
	Subject:	Concrete Lid D	esign	
<u>Beam #2 Design - Over Influent EQ</u>			Reference	
			ACI 350-06	ACI 318-14
Span = 14.75 ft			8.7.3	
* Beam spans as shown above				
Beam width = b = 24 in				
Beam height = h = 18 in				
bar diameter = 0.875 in #7 bar				
bar area = 0.6 in^2				
stirrup bar diameter = 0.375 in #3				
clear cover = 2 in Self Weig	ht of beam			
d = 15.1875 in 45	50 plf			
Concentrated Load from both containers: * Assume no shims suppor	rt container aboy	ve interior walls		
DI = 13689 lbs				
H = 6000 lbs	#7 bar	in heam		
$EL = 0000 \text{ lbs} \qquad \text{ITy} \text{S}$	#7 Udi			
SL = 7700 lbs bar spacing	= 4.78125	5 10		
RL = 2000 lbs				
Wdown = 960 lbs				
$W_{up} = -3640 \text{ lbs}$				
Wind (overturning) = 2975 lbs				
Factored Loads * Sd (see below for Sd factor)		without Sd	9.2.1	
(9-2) 1.2DL+1.6LL+0.5SL 42548.4 lbs		21689		
(9-3) 1.2DL+1.6SL+1.0LL 42649.6 lbs		21689		
(9-4) 1.2DL+1.6W+1.0LL+0.5SL 43727.0 lbs		22649		
(9-5) 1.2DL+1.0E+1.0LL+0.2S 43287.5 lbs		22400.828		
	0.052	2		
Use P = 43727.0 lbs	Seismic vert	ical component		
Modification Factor used in above load calculations				
Sd = $\phi Fv/(\gamma fs)$				
$\phi = 0.9$ (modification factor for tension-	controlled sec	ction)	R9.2.6	
$F_{v} = 60.000 \text{ psi}$ (Steel yield strength)				
$\gamma = 11$ factor (111 timate Load Factor (18ED))				
$f_{s} = 20.000 \text{ msi}$ (Steel direct boon and tensile structure of the	ength)			
	cingting			
fsmax = 320	lormal" onviro	nment exposures	10641	
$\frac{15 \text{ max} - 520}{\text{ B} (s \wedge 2 + 4/2 + db/2) \wedge 2 \rangle \wedge 0.5}$	vaniate conc	roto surfaco, por	10.0.4.1	
$D (3 2 + 4(2+\alpha b/2) 2) 0.5 $ Coating to be a	ipplieu to conc	Dura Plata 6000		
P = 1 2C			10 6 4 4	
D = 1.35 me	refore environ	ment is NORIVIAL	10.6.4.4	
db = 0.875 in #7 bar				
s = 4.78125 in spacing				
TSmax = 34/14 psi (for flexural stress)		,	10.6.4	
20000 psi (for direct and hoop tensile stres	s in normal ex	xposure)	9.2.6.2	
24000 psi (for shear stress carried by shear	reinforceme	nt)	9.2.6.4	

						Date:	11/7/2	2023		
						Job:	2310219	4) - P	hippsburg WV	/TP
						Subject:	Concrete	Lid D	esign	
									Reference	5
									ACI 350-06	ACI 318-14
_	Sd(min) =	1.0						Ī	9.2.6	
Sd Factor	r - Bending			Sd Fact	or - Shear	1				
U factor	Sd	Sd*U		U factor	Sd	Sd*U				
1.2	1.28	1.540		1.2	1.88	2.250	D			
1.6	1.00	1.600		1.6	1.41	2.250	D			
1.4	1.10	1.540		1.4	1.61	2.250	D			
0.5	3.08	1.540		0.5	4.50	2.250	D			
1	1.54	1.540		1	2.25	2.250	D			
0.2	7.70	1.540		0.2	11.25	2.250	D			
Moment a	at mid-span		•			P	_			
М	lu = Pab/L =	180094.9 lb	ft I			₩		a=	7.375	ft
Shear at s	upport			<u> </u>	a	<u>↓</u> b —	\bigcirc	b=	7.375	ft
	Vu = Pa/L =	37047 lb:	5 /	<	L		\downarrow	L=	14.75	ft
(Values inclu	ude self-weigh	t)		I						
Fy =	:		60,000	psi						
f'c =	:		4,500	psi Beam	Reaction =	25182	2 lbs			
Check Lid	Flexure	Mn > Mu								
ρ min =		0.00333 <=	= See ρ mi	n calcs below	(For Slabs pmir	is T&S Steel)				Table 7.6.1.1
ρ = As / (b	o*d)	0.00823 <=	= If ρ is les	s than ρ min, s	see below					
See Table 21	1.2.2 For Strai	n Boundaries whe	n (et) is co	mpression cor	ntrolled, transitio	on or tension co	ontrolled			Tbl. 21.2.2
	No	Compression	Controll	ed If ct < ct	у					
	No	Transition Zo	ne If e _{ty} <	< e _t < 0.005						
	Yes	Tension Cont	rolled Si	nce (ɛt) = o	r > 0.005					
** Solve for	or phiMn Ba	sed on Whitne	y Stress	Block						Fig R21.2.2a
a = stress	block depth	n = As*Fy / (0.	85*f'c*be	eff) =	1.9608	3 in.				
c = depth	to neutral a	xis = a / β =			1.1250) in.				
Mn = Nom	ninal Momer	nt Cap = As*Fy	/*(d-a/2)/	/12 =	213107	′ ftlb.				
φ=					0.9)				21.2.1
φMn = Ulti	imate Mome	ent Cap =			191796	3 ftlb.			R10.3.5	
check aga	ainst ρ min =	:			0.0033	} <	ρ			9.6.1.3
check aga	ainst ρ max	=			0.0000) <== determin	e ρ max eqn			
If below $\boldsymbol{\rho}$	min, multip	y As x 1.33 =			3.9900) in^2				9.6.1.3
if below $\boldsymbol{\rho}$	min, multipl	y phiMn x 0.7	5 =		143847	/ lb-ft				
				in.	5 = 1 / 1.33 x øN	In = reduction	ifρ < ρ min)			
				(note: code sa	ays ρ min need	not be satisfied	lif			
				As > 1.33 * As	s Required, so i	fρmin is not m	iet, can			
				simply reduce	capacity by 1/4	4 or multiply x 0	0.75)			
$\phi Mn = Uh$	timate Mor	nent Cap =			191796	lb-ft				
Mu =	180094.9	lb ft < f	Mn - Lid I	Elexure OK		Utilization =		0.94		

	Date: 11/7/2023	3	
	Job: 2310219(4) -	Phippsburg WWTP	
	Subject: Concrete Lid	Design	
		Reference	
		ACI 350-06 ACI 318	-14
4. Check Shear Capacity			
**neglects Vs (shear reinforcement)			
Vc = 2 * \(\lambda\) * (f'c)^.5 * b * d =	48903 lbs	22.5.5	.1
φ = 0.75 φVc =	36677 lbs	21.2	
$\Phi V c/2 = ** Ear Beam Decise (h > 10 in)$	18330 lbc / ft	11.4.6	1
	10333 1037 11	11.4.0	. 1
Check if shear capacity is OK without considering shear reinforcer	ment		
(Environmental durability factor does not apply to concrete shear capac	city)	9.2.6	
Vu = Vmax (U) = 37047 lbs < Vu - Beam Shea	ar NO GOOD		
See Below for R	Reinforcement Check	9.2.1	
Vs required = Sd (Vu-fVc) = 569.3428 lbs Shear rei	inforcement required	R9.2.6.4	
$V_{s} = Av fv d / s$ 33412.5 lbs		11562	
stirrup spacing = $s = 6$ in		11.5.0.2	
stirrup bar area = $Av = 0.11 \text{ in}^2$ (2)	bars per stirrup in Vs calculation)		
•			
minimum spacing = 7.59375		11.5.4.1	
Sd = 1.152649			
Vn = Vc + Vs/Sd = 77890.37			
φ Vn = 58417.78	Utilization = 0.63	3	
		7	
Use 18 x 24 w/	5 #7 bar in beam		
and #3 stirrups @	6 in o.c.		

Date:11/9/2023Job:2310219(4) - Phippsburg WWTPSubject:Container Embeds

Container	Dimensions	:		length	width	hei	ght		
(40 ft long	x 8 ft wide	x 10 ft tall)		40)	8	10		
DL =	43975	lbs	(provided	by Aquawo	orks)				
LL =	60	psf		Use	Lid depth	=	10 in		
SL =	40	psf							
RL =	20	psf		Assume w	ind acts or	ı singl	le container		
Winddowr	9.6	psf		for simplic	city / consis	stency	y		
Windup =	23.075	psf							
	Wind latera	I pressure:	20.8	psf (factor	ered)				
		I		-					
	Maximum	lateral load	at corner s	support:	208) Ibs			
	(container	length x he	ight x wind	pressure /	4 support	5)			
		-	-	-					
	Consider o	verturning	for embed	forces					
	Overall cor	ntainer mor	nent from	wind:	2080) Ib fi	t		
	couple dist	ance (embe	ed spacing)	:		7 ft (4	Assume 6" each	side to CL of sup	port)
	T = C = (M/	′d) =	, 0,		2971.42	9 Ibs	(up or down)		. ,
	()	,					(, ,		
	Total Facto	ored Dead L	oad :		10987.	5			
	0.6D - W =				3621.07	- 1 lbs i	down (no net ur	lift)	
	0.00				0021107	1.00	denn (ne net up		
	Maximum	Load:			3296	7 lbs			
					3250				
	See Hilti Pr	ofis Output	for ember	l analysis					
	Jeermann	ons output		a unury 515					

ununu hilti oom			
Company: Address: Phone I Fax: Design: Fastening point:	 Concrete - Jun 26, 2023	Page: Specifier: E-Mail: Date:	
Specifier's comments:			
1 Input data		000000	
Anchor type and diameter:	AWS D1.1 GR. B 1/2		
Item number:	not available		

1

Anchor type and diameter:	AWS D1.1 GR. B 1/2
Item number:	not available
Effective embedment depth:	h _{ef} = 5.000 in.
Material:	
Evaluation Service Report:	Hilti Technical Data
Issued I Valid:	- -
Proof:	Design Method ACI 318-14 / CIP
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate ^{CBFEM} :	I _x x I _y x t = 8.000 in. x 8.000 in. x 0.500 in.;
Profile:	Square HSS (AISC), HSS3X3X.250; (L x W x T) = 3.000 in. x 3.000 in. x 0.250 in.
Base material:	cracked concrete, Custom, f_c ' = 4,500 psi; h = 10.000 in.
Reinforcement:	tension: condition B, shear: condition B;
	edge reinforcement: none or < No. 4 bar

CBFEM - The anchor calculation is based on a component-based Finite Element Method (CBFEM)

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:		Page:	2
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jun 26, 2023	Date:	11/6/2023
Fastening point:			

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = -32,967; V _x = 2,080; V _y = 0;	no	7
		$M_x = 0; M_y = 0; M_z = 0;$		

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com			
Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jun 26, 2023	Date:	11/6/2023
Fastening point:			

2 Proof I Utilization (Governing Cases)

			Design	values [lb]	Utilization		
Loading	Proof	Proof		Capacity	β _N / β _V [%]	Status	
Tension	-		-	-	- / -	N/A	
Shear	Steel Strength		527	8,281	- / 7	ОК	
Loading		β _N	β _v	ζ	Utilization β _{N,V} [%]	Status	
Combined tension and shear loads		-	-	-	-	N/A	

3 Warnings

• Please consider all details and hints/warnings given in the detailed report!

Fastening meets the design criteria!

www.hilti.com			
Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jun 26, 2023	Date:	11/6/2023
Fastening point:			

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

04 FOUNDATION SLAB

123 north martin luther king jr. boulevard tulsa, oklahoma 74103 918.584.5858 · 800.364.5858 wallace.design

						Date:	11/9/202	3
						Job:	2310219(4)	- Phippsburg WWTP
						Subject:	Foundation	
<u>Foundatio</u>	n Design							Reference
Total weig	ht of tanks	and contain	ers					ACI 350-06 ACI 318-14
Tank dime	ensions							
W	L	Н	Volume					
13.167	14.75	7.75	1505	ft^3				
22	14.75	7.75	2515	ft^3				
17.5	14.75	11.81	3089	ft^3				
	Tota	al volume =	7109	ft^3				
Large Cont	tainer:			43975	lbs			
Small Cont	tainer:			10781	lbs			
Walls								
Interior	Length	height	thickness	Weight				
	14.75	7.75	1	17146.875	lbs			
	14.75	11.81	1	26135.156	lbs			
				о о	lbs	Tota	al	
				о о	lbs	43282.031	3 lbs	
Exterior								
	12.75	12.75	1	24384	lbs			
	12.75	12.75	1	24384	lbs			
	37,167	19.5	1	108713.48	lbs	Tota	al	
	37.167	19.5	1	108713.48	lbs	266195.	7 lbs	
			_]				
Lid	length	Width	Thickness					
	56.667	14.75	12			12537	6 lbs	
Fnd]					
Slab	length	Width	Thickness			1 ft projection	outside of wa	alls
(ft)	58.667	16.75	1,1875	ו		22110	1 lbs	
(10)	50.007	10.75	Thickness co	l nsiders minimur	n denth at s	loning slah	1.00	Assume liquid up to bottom
Liquid	Density [.]	70	ncf		in dependee	49766	2 lbs	of lid (conservative))
Liquid	Density.	70	per			43700	2 105	
Live Load :	=	containers	60	nsf x	50x8	= 2400	0 lbs	
2.176 2000		lid	60	nsf x remaind	er of lid	2615	0 lbs	
		Total Live L	oad =	50150	lhs	2013	0 105	
Snow Load	4 =		ouu	50150	105			
SHOW LOUC	SI =	78 1	nsf	65278 967	lhs	(Assume ful	l SL over entire	e lid area)
Wind Dow	/n·	70.1	P31	05270.507	105	(Assume full		
Drossuro -	- -	9.6	nsf	8024 0472	lbs			
Flessule -	-	9.0	psi	8024.0472	103			
		т	otal Load -	1221826	lbs	ר	71071	1 lbs Total DI
		1	otal Loau –	(Conconvotiv			hood instead	
Slab area	_	000	f+ ^ J		mbinatio		e loau ilisteau	JI
Sian ai ed -	-	903	ιι Ζ		monatio	115)		
	Popring		1255.2	ncf	l		77	2 DI Droccuro (omato tanka)
l	bearing pr	essule -	1333.3	hai			72	
Allowable	hearing are		2000	OK		loaring Processes	_ 70	0.0K
Allowable	searing hie		2000			earing riessure =	- 70	

						Date:	11/9/2023	3	
						Job:	2310219(4) -	Phippsburg V	/WTP
<u>Consider</u> F	lexure of fo	oundation sla	<u>ab</u>			Subject:	Foundation		
							Referen	се	
								ACI 350-06	ACI 318-14
From RISA	3D Model,	moment in	footing fror	n	1355.3	psf soil pressure	e and moments at		
yields a mo	oment force	e in the slab	of:	42590	lb ft	base of wall tra	nsferring into slab, tin	nes Sd	
Slab	thickness =	14.25					-		
Clear co	over (top) =	3	in	19039	lb ft	per RISA mod	el using multi-span		
bar	diameter =	1	in				. .		
	d =	10.75	in						
	f'c =	4500	psi						
Factored L	oads * Sd (see below fo	or Sd factor)	L			without Sd	9.2.1	
(9-2)	1.2DL+1.6	L+0.5SL		3232287.7	lbs		1497220.37	7	
(9-3)	1.2DL+1.65	SL+1.0LL		3232287.7	lbs		1538937.06	5	
(9-4)	1.2DL+1.6	W+1.0LL+0.5	5SL	3252725.2	lbs		1479968.67	,	
(9-5)	1.2DL+1.0	E+1.0LL+0.2	S	3385078.7	lbs		1507534.59)	
· · /						0.05	52		
	Use w =	1566.1	psf			Seismic vert	tical component	t	
	Factored lo	oad, without	t Sd						
Modificati	on Factor u	sed in above	e load calcu	lations					
Sd =	φFy/(γfs)								
φ =	0.9		(modificati	on factor for	tension-co	ntrolled sec	tion)	R9.2.6	
Fy =	60,000	psi	(Steel yield	l strength)					
γ =	U factor	•	(Ultimate L	oad Factor (I	RFD))				
fs =	20,000	psi	(Steel dired	ct hoop and t	ensile strer	ngth)			
_									
fs _{max} =		320			For "N	ormal" enviro	onment exposure	10.6.4.1	
	B (s^2 + 4	(2+db/2)^2)	^0.5	Соа	ting to be ap	oplied to cond	crete surface, per		
As =	0.79	in^2		Aqua	aworks, Shei	rwin Williams	Dura-Plate 6000		
B =	1.35				Ther	efore enviror	nment is NORMAL	10.6.4.4	
db =	1	in	As =	0.948	in^2	#9			
s =	10	in spacing							
fs _{max} =	21201	psi	(for flexura	al stress)				10.6.4	
	20000	psi	(for direct	and hoop ter	sile stress	in normal ex	(posure)	9.2.6.2	
	24000	psi	(for shear s	stress carried	by shear r	einforceme	nt)	9.2.6.4	
Sd Factor	- Bending			Sd Factor	- Shear				
U factor	Sd			U factor	Sd				
1.2	2.12	2.547		1.2	1.88	2.25	50		
1.6	1.59	2.547		1.6	1.41	2.25	50		
1.4	1.82	2.547		1.4	1.61	2.25	50		
0.5	5.09	2.547		0.5	4.50	2.25	50		
1	2.55	2.547		1	2.25	2.25	50		
0.2	12.74	2.547		0.2	11.25	2.25	50		

			Date:	11/9/2023		
			Job:	2310219(4) -	Phippsburg V	VWTP
			Subject:	Foundation	1	
Check Lid Flexure	Mn > Mu					
ρ min =	0.00333 <== See rho	- min calcs below (For Slab	s rhomin is T&S Ste	el)		Table 7.6.1.1
$\rho = As / (b^*d)$	0.00735 <== If ρ is les	s than ρ min, see below		,		
See Table 21.2.2 For Stra	in Boundaries when (ɛt) is cor	npression controlled, trans	sition or tension con	trolled		Tbl. 21.2.2
No	Compression Controlle	ed If ∈t < ∈tv				
No	Transition Zone If € _{tv} <	et < 0.005				
Yes	Tension Controlled Sin	ice (ct) = or > 0.005				
** Solvo for phiMp Br	an Whitney Stress	Block				Fig P21 2 22
	aseu un vunimey stress i h - Acteu / /O 25tress i	DIUUK ff) – 1つ	202 in			Fiy RZ I.Z.Za
a = suess prock dept c = depth to peutral a	п – Азгу/ (0.00 ГС"Del axis = а/ R =	1.2 1 -	021 in			
Mn = Nominal Momo	$nt Can = \Delta e^{T_1/4} - \frac{1}{2} \frac{1}{2}$	יכ.ו 12 = 12	0∠ i iii. 018 ft _lb			
	ni Cap – As i y (u-a/2)/	12 - 40	010 IL-ID. 0 9			21.2.1
∲Mn = Ultimate Mom	ent Cap =	43	0.5 216 ft -lb		R10 3 5	21.2.1
check against o min	=		033 <	0	110.5.5	9613
check against p max	=	0.0	150 <== determine	rho max eqn		0.0.110
If below p min, multip	ly As x 1.33 =	1.2	608 in^2	nio nax oqn		9.6.1.3
if below p min, multip	ly phiMn x 0.75 =	32	412 lb-ft			0101110
1 / 1	51	in. φMn x 0.75 = 1 / 1.33	$x \phi Mn = reduction i$	fρ<ρmin)		
		(note: code says ρ min n	eed not be satisfied	if		
		As > 1.33 * As Required,	so if ρ min is not me	et, can		
		simply reduce capacity b	y 1/4 or multiply x 0.	.75)		
φMn = Ultimate Mo	ment Cap =	4321	6.3 lb-ft	,		
Mu (Sd) = 42590	D	< fMn - Lid Flexure Of	Utilization =	0.99		
		Note:				
		4500 psi is minimum	concrete strength	for concrete	Table 4.3.1	
		with low permeability	(concrete is coat	ed		
		is coated as directed	by Aquaworks)			
			-, -, -,			
Check o balanced an	d et=.005 limits:					
β = Max of ((0.85-0.0	5*(f'c-4000)/1000,0.65)) = 0.8	250		10.2.7.3	
ety = tension yield st	rain = fy / Es	0.0	021 <== Es = 29	,000,000 psi	R10.3.2	
ec = balanced concre	te strain =	0.0	030	-	R10.3.2	
et = actual tension st	rain = ((d-c) / c)*strain s	c 0.0	021		R10.3.3	
ρ temp = temp and s	hrink steel = 0.0020	<== if Fy<60,000 psi, .	002 -or0018 * 6	60,000psi / Fy	Table 7.12.2.	 1
As(temp)= (ρ temp *	beff * h) = 0.0573	in^2		,		
ρ bal = (0.85*f'c*β/F	y)*(0.003/(0.003+ety)	0.0	311 <== balance	ed steel ratio	R10.3.3	
0.75(ρ bal)=		0.0	233		R10.3.5	
$\rho t = (.85*\beta*f'c / Fy)*$	(0.003/(0.008))	0.0	197 <== Max reinf. F	Ratio, when steel strai	n >= .005	
As $(max) = (pt * beff$	* d) =	0.5	651 in^2		R10.3.5	

						Date:	11/9/2023	3	
						Job:	2310219(4) -	Phippsburg V	VWTP
						Subject:	Foundation		
								Referen	се
								ACI 350-06	ACI 318-14
ρ min (b) = 200/1	fy=				0.0033				9.6.1.2
ρ min (a) = 3*(f'o	c)^0.5/Fy	=			0.0034			10.5.1	9.6.1.2
ρ min.= greater o	of $ ho$ min(a) or p	min(b) =		0.0034	<== Min. I	reinf. Ratio		
As (min)= (ρ min	* beff *	d) =			0.4	in.2 <== unles	s As > 1.33*As reqd pe	r code	9.6.1.3
-									
4. Check Shear	Capacity	y							
**neglects Vs (sh	near reinf	orceme	nt)						
Vc = 2 * λ * (f'c)/	^.5 * b * c	= t	,		17307	lbs			22.5.5.1
φ =	0.75			φVc =	12980	lbs			21.2
i.				+ · ·					
Check if shear can	acity is O	K withou	it considerina	shear reinforcer	nent				
(Environmental dura	ability facto	or does no	nt apply to con	crete shear canac	itv)			926	
$V_{II} = V_{max}(II) =$		12603	R lhs		· OK	Utilization	- 09	7	
Vu = VIIIux (0) =		1200.	103	Soo Polow for F	oinforcom	ont Chack	- 0.57	0.2.1	
Snedi at û away irû	in support			See below for r	ennorcen			9.2.1	
Ve required - Ed		_	Ø10 000	lbs No shoo	roinforc	omont roa	uirod	PO 2 6 4	
vs required = Sd	(vu-ivc)	-	-849.093	ius no sneal	remorc	ementrequ	uireu	к9.2.0.4	l
	Use	18	in slab w/	#9	@	10	in spacing		

Note: Calculation takes into account the sloping floor of the sludge tank, which, at its lowest point is 3.75" below the highest point Therefore, 'd' = 14.25 inches, but the FND slab thickness is 18 inches everywhere else - so the design is good for the entire slab

	Sd Mu =	42590	lb ft				
	∲Mn = A	sFy(d-a/2) =	480181	lb ft	Slab Fle	xure OK	
		As =	0.79	in^2	1.7954	55 #8 bars	
		Fy =	60,000	psi			-
		f'c =	4500	psi			
		b =	10	in			
		a =	1.239216	in			
Check Wall s	hear	∳Vn>Vu+Vs	/Sd				
Vc = 2 * (f'c)	^(0.5) *b	*d					
	φ =	0.75					
φVc =	10817	lbs		Slab Shear	ОК		
Use	14.25	in slab w/	1.795455	#8 bars	at	10	on center

05 BUOYANCY

123 north martin luther king jr. boulevard tulsa, oklahoma 74103 918.584.5858 · 800.364.5858 wallace.design

Created 8/29/11

			Date Project Subject	11/9/2023 Phippsburg WWT Bouyancy Calc	Sheet No. P	of
CHECK CONCRETE BUOYANT DEADMAN FOR BURIED TANK						References
ASSUMPTIONS:						
TANK IS EMPTY			\leq / Λ	RE: PLAN FOR REINFORCEMENT		
TANK IS COMPLETELY SUBMERGED			$\times//$	∽9" THICK N S		
NO SLAB		for the second of the second o	$\leftarrow \downarrow \div$	¥_	<u>T.O.C. EL</u>	
			$+\sqrt{\cdot}$	<u> </u>	-	
GIVEN INFO:		#5 HORIZ AT	11///	RE: PLAN FOR		
DRY WEIGHT OF TANK:	660788_lbs		1 \	REINFORCEMENT		
ASSUMED WEIGHT OF SOIL:	110 pcf	PLAN FOR REINF.	П	TRANSVERSE (E-W) REINFORCEMENT		
WEIGHT OF REINFORCED CONCRETE:	150 pcf	7 08	2" CIR			
DENSITY OF fluid:	62.4 pcf	#5_VERT AT		-#5 DOWFLS AT		
DIMENSIONS OF TANK:		12" O.C. E.F.		12" O.C. E.F. WITH [∞] 2'-6" HOOK INTO		
Length:	58.67 ft	1/2" WAY		FOOTING		
Round (R) or Square (S)	S		1			
Width:	16.75 ft			WATERSTOP, GREEN		
Height:	7.50 ft	→ <u>55</u> 2		EQUIVALENT		
Diameter:	10.00 ft		¶ \ *		¢ (
DEPTH OF SOIL ABOVE TANK:	0.00 in		N	/.		
DEPTH OF SOIL ABOVE DEADMAN:	0.00 in		1/1/			
(used min. depth with no traffic)		CIR, D.4	\land	- RE: PLAN FOR REINF. - 3 1/2"x1 1/2"		
ASSUMED SLAB DEPTH:	0.00 in	1-0 1-0	+	CONT. KEYWAY		
ASSUMED BUOYANT DEADMAN WIDTH:						_
Assumed Deadman Width:	0.00 ft	EVEN IF THE SOIL IS COMPLET	ELY SATUR	ATED TO THE TOP (OF THE TANK,	
DEPTH OF SOIL ABOVE WATER TABLE:	0.00 in	DEADMAN NOT REQUIRED. W	EIGHT OF T	TANK (FOOTING, W	ALLS, LIDS,	
		SURROUNDING SOIL, AND DL	OF METAL	BUILDING) EXCEED	S WT OF EQUAL	
		VOLUME OF WATER (CELL C55	5)			
DETERMINE VOLUMES:		//				
	0	* Insert "0 ^r if tank volume is to be calculated fror	m "Given In	fo" above. Otherwi	se, insert known volu	me
TANK + FOUNDATION: Calculated Value:	7394.80 ft ³	*This cell can be overridden if tank volume is kno	wn (should	include foundation	volume)	
SOIL: Tank + Fdn Volume:	7394.80025 ft ³					
above tank:	0.00 ft ³					
huovant soil above deadman:	0.00 ft ³					
dry soil above deadman:	0.00 10					
	0.00					
ahaya tanku	0.00 ft ³					
above tallk.	0.00 11		_			
	7204 00 643			N N		
TOTAL VOLOME (TANK+FND):	7394.80 11	8844.05 IL (THIS IS THE TOTAL VOLUME C	JF STSTEIVI)		
DETERMINE WEICHTE.		RECHECK				
	660787 7062 lbc					
SOIL (wt. of soil above tank y soil volume):	172E44 lbc	/				
4" SLAP (wt. of concrete x volume):	1/5544 lbs	+				
	82/1221 2068 lbs	_				
Distance from grade to water table:	3 ft					
	510					
(dencity of water x total volume)	450086 2856 lbc					
(density of water x total volume)	435580.2830 105					
DIFFERENCE OF BUOYANT FORCES AND GRAVITY FORCES						
(wt. of equal volume of water - total weight)	-374345 0112 lbs					
Required Elotation Safety Factor (SE):	1 25	[ACI 350 4B-04 3 1 2]				
Actual Safety Factor (Total Weight/Buoyant Force):	1.23					
	1.01					
BUOYANT WEIGHT OF CONCRETE:	87.6 ncf					
(wt. of concrete - density of water)	67.0 pci					
WE OF CONCIENT OF SOLE ABOVE DEADMANN	ATE not					
(wt. of soil - density of water)	47.0 ptf					
	110 pcf					
weight of DRT SUIL ABOVE DEADIVIAIN:	110 pct					
	0 lbc					
	-37/3/5 0112 lbc					
(force difference-weight of hubbant coil)	-3/4343.0112 105					
horce unterence-weight of buoyant sony						

