STRUCTURAL CALCULATIONS

FOR

Martin Woodrow

28'x36'x12' Pole Structure

November 22, 2024

Project: 14167

PREPARED FOR:

Martin Woodrow 31555 Green Ridge Drive Oak, Creek, Colorado 80467

PREPARED BY:

Steel Structures America, Inc. PO Box 895 Post Falls, Idaho 83877

REVIEWED FOR CODE COMPLIANCE 01/30/2025

Post-Frame Building Calculations

Prepared For: Martin Woodrow					Job #:	14167				
Project Loc	ation:	31555 Gree	en Ridge Dr	1VE 80467			DATE:	11/6/2024		
Design Crit	eria	Oak, Cleek		80407						
Ū										
<u>Codes:</u>	2021	Internatior	nal Building	Code						
	7-22	ASCE								
	2018	NDS								
	2015	PFBDM								
Roof Loads	<u>.</u>			Loft Floor Loa	ıds:		Wall Weigh	ıt:		
Top Ch	ord: DL _{RT} =	8	psf	DL _F =	12	DL (psf)		Main DL:	8	psf
Bot Ch	ord: DL _{RB} =	7	psf	LL _F =	40	LL (psf)	Lean-To We	eight:		
Тор (Chord LL _R =	102	psf				L	ean-To DL:	15	psf
Snow Loads	<u>s:</u>									
	Flat Root	f Snow, P _f =	110	psf	Section 2	7.3 ASCE7-1	6			
	Peak G	round, P _g =	143	psf	Elev. =	8004	ft			
		C _e =	1	Per Table 7.3-	-1: ASCE7	7-16				
				Wir	nd/Terrai	n Category:	E	3	Section 2	6.7
				Roof	Exposure	e Condition:	Partially	Exposed		
		C _t =	1.1	Per Table 7.3	-2: ASCE	7-16				
					Thermal	Conditions:	3. Wel	<mark>l Ventilated</mark>	Roofs	
		ls=	1	Per Table 1-5	5.2: ASCE	7-16				
		(C	400	c.	Ris	k Category:		Ref: Table 1	5-1: ASC	E7-16
	Slopea коо	$r \text{ Snow, } P_s =$	102	pst Section 7.3 ASCE7-16						
		$C_{\rm S}=$	0.93	Per Figure 7.4	I-1: ASCE	7-16	c			
Wind Loads	<u></u>	mah (nom	inall	<u>Seismic Loads</u>	<u>0 511</u>	c	<u>Soil Bearing</u>	<u>l:</u>	2000	nof
	90	mpn (nom	inal)		0.511	S _s		P _{soil}	3000	psr
	115	mpn (ULIII -	VIATE)		0.474	S _{ds}		Perma ?	YES	
_	В	Exp.			0.096	S ₁				
P _{int. zone}	11.64	psf.			0.153	S _{d1}				
P _{ext. zone}	15.6	psf.			2.5	R				
а	3	ft.								
Building Dir	<u>nensions:</u>	20	£4	<u>Lean-to:</u>	10	4		DeefClana		C .12
	length	28	rt. ft	Enclosed	1Z NO	11. 2	ı Ric	100j Siope: 1ae Height	19.00	6 :12 ft
	Height	12	ft.	Eave H	9	: ft.	Mean Ri	oof Heiaht:	15.50	ft.
В	ay Spacing	12	ft.		-	••			_2.00	
Eave	Overhangs	2	ft.	End O/Hang	2	ft.				

Per ICC Commentary:

"Wind speeds are designated as "ultimate design" or "nominal design" wind speeds and are used for either strength design or allowable stress designs respectively. The ultimate design wind speeds are indicated in Figures 1609A, B & C, and vary based on the building's risk category and location. The ultimate design for wind speeds for a Risk Category II building vary from 110 mph on the West Coast to 180 mph in hurricane-prone areas in southern Florida. These wind speeds would convert to a nominal design wind speed, or what was previously called the "basic wind speed" 85 mph for the West Coast and 139 mph for southern Florida when using allowable stress design."

Project :	File :	
Subject :	Date :	10/31/2024
Location :	Eng :	

Design Wind Pressure, p, Equation 28.5-1 (ASCE 7-16)

System Type	Structure Type		Equation		
Main Wind Force Resisting System (Envelope Procedure)		Rigid Structures Low-Rise Buildings Simple Diaphragm Enclosed Buildings	<i>ps</i> λ Kzt ps30	: λ Kzt (ps30) : Adjustment Factor : Topographic Factor : Figure 28.5-1	
Building Height Roof Angle Basic Wind Speed Occupancy Category Exposure Category Topography Kzt @ h		15.5 ft 26.5 deg. 90 mph II B None Topographic factor (1 + K1 · K2 · K3) ²		(Figure 26.5-1&2 A-D) (Table 1.5-1) (Section 26.7.3) (Figure 26.8-1)	

Design Wind Pressure, p, Figure 26.8-1 - Load Case 1

Location	Adjustment Factor	Case A Ps30 (psf)	Case A Ending P (psf)	Case B Ps30 (psf)	Case B Ending P (psf)
Zone A	1.00	15.59	15.59	12.80	12.80
Zone B	1.00	4.79	4.79	-6.70	-6.70
Zone C	1.00	11.64	11.64	8.50	8.50
Zone D	1.00	4.26	4.26	-4.00	-4.00
Zone E	1.00	-4.71	-4.71	-15.40	-15.40
Zone F	1.00	-9.50	-9.50	-8.80	-8.80
Zone G	1.00	-3.52	-3.52	-10.70	-10.70
Zone H	1.00	-7.71	-7.71	-6.80	-6.80
Eoh	1.00	-10.84	-10.84	-21.60	-21.60
Goh	1.00	-9.72	-9.72	-16.90	-16.90

Design Wind Pressure, p, Figure 28.5-1 - Load Case 2

Location	Adjustment Factor	Case A Ps30(psf)	Case A Ending P (psf)
Zone A	1.00	4.32	4.32
Zone B	1.00	2.97	2.97
Zone C	1.00	3.45	3.45
Zone D	1.00	2.37	2.37
Zone E	1.00	-0.21	-0.21
Zone F	1.00	-5.00	-5.00
Zone G	1.00	0.95	0.95
Zone H	1.00	-3.31	-3.31
Eoh	1.00	-1.53	-1.53
Goh	1.00	-1.74	-1.74

ATC Hazards by Location

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

• The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ΔΤC Hazards by Location

Search Information

Address:	31555 Green Ridge Drive, Oak Creek, COLO
Coordinates:	40.236389, -106.831358
Elevation:	8004 ft
Timestamp:	2024-11-06T19:23:49.382Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	П

D-default **MCER Horizontal Response Spectrum**

5.0 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Site Class:

Name	Value	Description
SS	0.511	MCE _R ground motion (period=0.2s)
S ₁	0.096	MCE _R ground motion (period=1.0s)
S _{MS}	0.711	Site-modified spectral acceleration value
S _{M1}	0.23	Site-modified spectral acceleration value
S _{DS}	0.474	Numeric seismic design value at 0.2s SA
S _{D1}	0.153	Numeric seismic design value at 1.0s SA

Additional Information

Name	Value	Description
SDC	С	Seismic design category
Fa	1.391	Site amplification factor at 0.2s
Fv	2.4	Site amplification factor at 1.0s
CRS	0.918	Coefficient of risk (0.2s)
CR ₁	0.94	Coefficient of risk (1.0s)
PGA	0.344	MCE _G peak ground acceleration
F _{PGA}	1.256	Site amplification factor at PGA
PGA _M	0.432	Site modified peak ground acceleration
ΤL	4	Long-period transition period (s)
SsRT	0.511	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.556	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.096	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.102	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)

WOOD BEAM DESIGN calculations per 2018 NDS as referenced by the 2021 IBC

Prenared For	Martin Woodrow				Iob #·	14167
Project Location:	31555 Green Ridge Drive					11/6/2024
	Oak, Creek, Colorado 804	67			271121	11,0,2021
Framing Member:	Typical Roof Purlins					
Training Memoer.	1 jpicul Root I ullillo					
Beam dimensions:		Loading:			Wood propert	ies:
Beam size =	2 x 10	$w_{D} (psf) =$	8		Species=	DF
b =	1.5 in.	$w_{LL} (psf) =$	102	SNOW	Grade=	2
d =	9.25 in.				$C_D =$	1.15
Clear Span =	11.5 ft.	Limit Δ /L =	180		$C_F =$	1.10
spacing (in.) =	<mark>16</mark> in.				$C_r =$	1.15
					$C_i =$	1.00
		Comp	Edge Braced?	Y	$C_L =$	1.00
					F_b (psi) =	1309
					$F_v (psi) =$	207
					E (psi) =	1,600,000
Calculations:						
Load Analysis:						
	W = 147.203067	plf				
	V = 846.417633	lbs				
	M = 29201	in-lbs				
Stresses:						
$f_v(psi) =$	92 $f_v/F_v =$	0.44		Shear OK		
$f_{b}(psi) =$	1365 $f_{\rm b}/F_{\rm b} =$	1.04		Bending O	K	
Deflection:				8		
Δ (in) =	0.37 $\Delta/L =$	377		Deflection	OK	
	···· /					
	USE: 2 x 10 @ 1	6in O.C., DF	7 No. 2			
		···· •·•, DI	1.00			

WOOD BEAM DESIGN

Main Post :

Lean-To Post =

4710.5058

6348.9426

5078.5058

6845

368

496

calculations per 2018 NDS as referenced by the 2021 IBC

Prepared For:	Martin Woo	odrow				Job #:	14167
Project Location:	31555 Gree	n Ridge Drive				DATE:	11/6/2024
	Oak, Creek,	Colorado 804	67				
Framing Member:	Lean-To Roo	of Rafters					
	Gable End F	Rafter Worst C	ase When Ga	ble Overhang	, Present		
Beam dimensions:			Loading:			Wood proper	ties:
Beam size =	1 3/4 x 14	1	$w_D (psf) =$	8		Species=	LVL
b =	1.75	in.	$w_{LL} (psf) =$	102	SNOW	Grade=	2.0E
d =	14	in.				$C_D =$	1.15
Clear Span =	11.5	ft.	Limit $\Delta/L =$	180		$C_F =$	0.97
spacing (in.) =	72	in.				$C_r =$	1.00
End Overhang (in.) =	24	in.				$C_i =$	1.00
Trib. Width (in.) =	96	in.	Comp	Edge Braced?	Y	$C_L =$	1.00
						$F_b(psi) =$	3234
						F_v (psi) =	328
						E (psi) =	2,000,000
Calculations:							
Load Analysis:							
·	W =	= 883.2184	plf				
	V	= 5078.5058	lbs				
	M =	= 175208	in-lbs				
Stresses:							
$f_{v}(psi) =$	311	$f_v/F_v =$	0.95		Shear OK		
$f_{\nu}(psi) =$	3065	$f_{\rm L}/F_{\rm L} =$	0.95		Bending O	К	
Deflection:	0000	-0 - 0	0.00		200 ang 0		
Δ (in) =	0.42	$\Delta / I =$	210		Deflection	0K	
	0.45	<u></u> ∆, L =	510		Defiction	UK	
	LICE.	1.2/411 - 1.4			3 0E		
	USE:	1 3/4 × 14		9.C., LVL G	r: 2.0E		
Post Connections:							
	Reactions.	•		Connection:			
			COMMON	<i>NRAFTER</i>			
	DI		T → 1	z'/bolt	z'/nail	QTY 16d	
	DL	SL	Total	3/4" Bolt	16d Nails	(8 min.)	
Main Post =	276	3532.87935	3808.87935	787.75	162.15	19	Add Shear Blocks
Lean-To Post =	372	4761.70695	5134	787.75	162.15	27	Add Shear Blocks
		GABLE RAFT	TER (INCLUD	ES GABLE EN	VD O/HANG)		
	DI	CT	T. (1	z'/2 screw	z'/nail	(8 min)	
	DL	SL	i otai	(2)1/4" SDS	16d Nails	(0 mm.)	

782

782

162.15

162.15

27

38

WOOD BEAM DESIGN

calculations per 2018 NDS as referenced by the 2021 IBC

E(psi) = 2,000,000

Prepared For:	Martin Woo	drow				Job #:	14167
Project Location:	31555 Greer	1555 Green Ridge Drive				DATE:	11/6/2024
	Oak, Creek, (Colorado	80467				
Framing Member:	Rafter Crossir	ıg					
Beam dimensions:			Loading:			Wood propert	ies:
Beam size =	1 3/4 x 16		$w_D (psf) =$	12		Species=	LVL
b =	1.75	in.	$w_{LL} (psf) =$	102	SNOW	Grade=	2.0E
d =	16	in.				$C_D =$	1.15
Clear Span =	13.5	ft.	Limit Δ /L =	180		$C_F =$	0.94
spacing (in.) =	72	in.				$C_r =$	1.00
End Overhang (in.) =	24	in.				$C_i =$	1.00
Trib. Width (in.) =	96	in.	Comp	Edge Braced?	Y	$C_L =$	1.00
						F_b (psi) =	3149
						F_v (psi) =	328

Calculations:

Load Analysis:

$\mathbf{W} =$	915.2184	plf
V =	6177.7242	lbs
M =	250198	in-lbs

Stresses:

$f_v(psi) = 331$	$f_v/F_v =$	1.01	Shear OK
$f_{b}(psi) = 3351$	$f_b/F_b =$	1.06	Bending NG
Deflection:			
$\Delta (in) = 0.57$	Δ/L =	283	Deflection OK

USE: 1 3/4" x 16" @ 72in O.C., LVL Gr: 2.0E

Post Connections:

	Reactions	y•		Connection:			
	COMMON			N RAFTER			
	DL	SL	Total	z'/bolt 3/4" Bolt	z'/nail 16d Nails	QTY 16d (8 min.)	
Main Post =	486	4147.29315	4633.29315	787.75	162.15	24	Add Shear Blocks
Lean-To Post =	630	5376.12075	6006	787.75	162.15	33	Add Shear Blocks
		GABLE RAF	TER (INCLUD	ES GABLE EN	ID O/HANG)		
	DL	SL	Total	z'/2 screw (2)1/4" SDS	z'/nail 16d Nails	QTY 16d (8 min.)	
Main Post =	648	5529.7242	6177.7242	782	162.15	34	Add Shear Blocks
Lean-To Post =	840	7168.161	8008	782	162.15	45	Shear Block

Project Title: Engineer: Project ID: Project Descr:

Steel Structures America Inc Description : 14167- Loft framing Wood Beam Design : Loft Joist Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 **BEAM Size :** 2x8, Sawn, Fully Braced Using Allowable Stress Design with IBC 2021 Load Combinations, Major Axis Bending Wood Species : Douglas Fir-Larch Wood Grade : No.2 1,350.0 psi 1,600.0 ksi Fb - Tension 900.0 psi Fc - Prll Fv 180.0 psi Ebend- xx Density 31.210 pcf Fb - Compr Fc - Perp 625.0 psi 575.0 psi 900.0 psi Ft Eminbend - xx 580.0 ksi Applied Loads Beam self weight calculated and added to loads Unif Load: D = 0.0150, L = 0.040 k/ft, Trib= 1.333 ft **Design Summary** 0.920; 1 D(0.020) L(0.05332) Max fb/Fb Ratio = fb : Actual : Fb : Allowable : 1,142.37 psi 1,242.00 psi at 5.750 ft in Span # 1 2x8 \mathbf{X} Load Comb : +D+L+H 11.50 ft Max fv/FvRatio = 0.300:1 54.01 psi at 0.000 ft in Span # 1 180.00 psi fv : Actual : Fv : Allowable : Load Comb : +D+I +H Max Deflections Max Reactions (k) D <u>s</u> W E <u>H</u> Transient Downward 0.277 in Total Downward 0.393 in Lr L Left Support 0.31 0.13 Ratio 498 Ratio 351 Right Support 0.31 0.13 LC: L Only LC: +D+L+H **Transient Upward** 0.000 in Total Upward 0.000 in Ratio 9999 Ratio 9999 LC: LC: Wood Beam Design : Loft Edge Beam/Ledger Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 1.75x11.875, VersaLam, Fully Braced **BEAM Size :** Using Allowable Stress Design with IBC 2021 Load Combinations, Major Axis Bending Wood Species : Wood Grade : TecLam 2.0E TecLam Laminates Fb - Tension Fb - Compr Fc - Prll 1600 psi 2850 psi Fv 2000 ksi 43.7 pcf Ebend- xx Density 285 psi 2850 psi Eminbend - xx:530120482 ksi Ft Fc - Perp 750 psi 1000 psi Applied Loads Beam self weight calculated and added to loads Unif Load: D = 0.0120, L = 0.040 k/ft, Trib= 5.750 ft **Design Summary** D(0.0690) L(0.230) Max fb/Fb Ratio 0.711; 1 2,027.58 psi 2,853.18 psi at 6.750 ft in Span # 1 fb : Actual : Fb : Allowable : 1.75x11.875 Load Comb : +D+L+H 13.50 ft Max fv/FvRatio = 0.449:1 fv : Actual : Fv : Allowable : 127.87 psi at 12.555 ft in Span # 1 285.00 psi Load Comb : +D+L+H Max Deflections Max Reactions (k) D Lr <u>S</u> W E Н Transient Downward 0.353 in **Total Downward** 0.469 in L Left Support 0.51 0.51 1.55 Ratio 458 Ratio 345 Right Support LC: L Only LC: +D+L+H 0.000 in 0.000 in **Transient Upward Total Upward**

Ratio

9999

LC:

Ratio

Project File: 14167.ec6

(c) ENERCALC INC 1983-2023

9999

LC:

Multiple Simple Beam LIC# : KW-06016166, Build:20.24.03.04

WOOD POST DESIGN

calculations per 2018 NDS as referenced by the 2021 IBC

Job #:	14167
DATE:	11/6/2024

Prepared For:	Martin Woodrow
Project Location:	31555 Green Ridge Drive
	Oak, Creek, Colorado 80467

Post Location: Main Posts w/ Lean-To

Post dimensions:			Loading:			Wood propertie	s:
Post size =	(3)2x8		DL	3792	lbs.	Species=	SPF
b (in) =	4.5		SL	27034	lbs.	Grade= <mark>1</mark> 5	<mark>SR 1950Fb-1.7</mark> E
d (in) =	7.125		LL	0	lbs.	$(F_b) C_D =$	1.6
Unbraced L_x (ft) =	12		D+S	30826	lbs.	$(F_c) C_D =$	1.15
$K_x =$	0.8		w_{wind} (plf) =	140		$(F_b) C_F =$	1.0
Unbraced $L_y(ft) =$	2	Ec	ccentricity (in) =	0		$(F_{c}) C_{F} =$	1.0
$K_y =$	0.8		Snow?	Y		$C_L =$	1.0
Perma?	YES					$C_r =$	1.25
						Ci=	1.0
						$C_p =$	0.7
						c' =	0.8
						$K_{CE} =$	0.3
						F_b (psi) =	3900
						$F_{c}^{*}(psi) =$	2659
						F'_{c} (psi) =	1756
Calculations:						E (psi) =	1,700,000
Slenderness ratio:							
Max $L_e/d =$	16.2	Slenderne	ess ratio OK				
Stresses:		D+S	D+.75(S+L)+.75W	0.6D+W		Deflection:	
	f_c (psi) =	961	751	71		D(in) = 0	.12
	$f_{bwind} (psi) =$	0	594	792			
Interaction equation:		D+S	D+.75(S+L)+.75W	0.6D + W			
[fc/F'c]^2 + [1/(1-fc/Fce	ex)](fbx/F'bx) =	0.09	0.35	0.22	<1 OK		

Results: (3)2x8 POST SPF Gr: MSR 1950Fb-1.7E Perma Column PC8300

EMBEDDED POST FOOTING

Prepared For:	Martin Wood	drow				Job #:	14167
Project Location:	31555 Green	Ridge Drive				DATE:	11/6/2024
	Oak, Creek, O	Colorado 80467					
Post Location:	Main Post w/	Lean-To Footing					
		-					
Lateral Loads:			Vertical Load	s:			
H (ft) =	12		DL	4944	lbs.		
wind (plf)	140		SL	27034	lbs.		
Footing Diamter (in)	24		LL	0	lbs.		
Surface Restraint?	Ν		D+S	31978	lbs.		
Passive Soil Pressure Bearing (psf)=	250		P _{soil}	3000	psf.		
			Embedment	5.0	ОК		
V _{max} (lbs)=	1048		P _{soil}	5400	psf		
M _{max} (lb-ft)=	2514		A _{ftg.}	5.9	sf.		
d _{equiv} (ft)= M/V=	2.4		Diameter	2.7	Bell to	3'-0 Dia	meter
D _{eff} (in)= 1.4D=	34				w/ 12	in. Shou	lder
ft. minimum embedment	2.6	=0.5A[1 + (1 + (1 + 4.36d/A)^1/2]					

calculations per 2015 PFBDM

WOOD POST DESIGN

calculations per 2018 NDS as referenced by the 2021 IBC

Job #:	14167
DATE:	11/6/2024

 Prepared For:
 Martin Woodrow

 Project Location:
 31555 Green Ridge Drive

•	U
	Oak. Creek. Colorado 80467

Post Location: Lean-To Posts

Post dimensions:			Loading:			Wood propertie	s:
Post size =	6x6		DL	1440	lbs.	Species=	HF
b (in) =	5.5		SL	9831	lbs.	Grade=	HF #2
d (in) =	5.5		LL	40	lbs.	$(F_b) C_D =$	1.6
Unbraced L_x (ft) =	9		D+S	11271	lbs.	$(F_{c}) C_{D} =$	1.15
K _x =	0.8		w_{wind} (plf) =	16		$(F_b) C_F =$	1.0
Unbraced L_y (ft) =	9	Ε	eccentricity (in) =	0		$(F_{c}) C_{F} =$	1.0
K _y =	0.8		Snow?	Y		$C_L =$	1.0
Perma?	YES					$C_r =$	1.00
						Ci =	0.8
						$C_P =$	0.9
						c' =	0.8
						$K_{CE} =$	0.3
						F_b (psi) =	920
						$F_{c}^{*}(psi) =$	661
						F'_{c} (psi) =	575
Calculations:						E (psi) =	1,100,000
Slenderness ratio:							
Max $L_e/d =$	15.7	Slenderr	ess ratio OK				
Stresses:		D+S	D+.75S+.75W	0.6D + W		Deflection:	
	$f_{c}(psi) =$	373	291	29		D(in) = 0	.01
	f _{bwind} (psi) =	0	51	68			

Interaction equation:	D+S	D+.75S+.75W	0.6D + W	
[fc/F'c]^2 + [1/(1-fc/Fcex)](fbx/F'bx) =	0.18	0.16	0.08	<1 OK

Results: PT 6x6 POST HF Gr: HF #2 Perma Column PC6400

EMBEDDED POST FOOTING

Prepared For:	Martin Wood	row			Job	#: 14167
Project Location:	31555 Green	Ridge Drive			DAT	E: 11/6/2024
	Oak, Creek, C	olorado 80467				
Post Location:	Lean-To Post H	ooting				
Lateral Loads:			Vertical Loads	5:		
H (ft) =	9		DL	1440	lbs.	
wind (plf)	140		SL	9831	lbs.	
Footing Diamter (in)	24		LL	0	lbs.	
Surface Restraint?	N		D+S	11271	lbs.	
Passive Soil Pressure Bearing (psf)=	250		P _{soil}	3000	psf.	
			Embedment	4.0	OK	
V _{max} (lbs)=	786		P _{soil}	4800	psf.	
M _{max} (lb-ft)=	1414		A _{ftg.}	2.3	sf.	
d_{equiv} (ft)= M/V=	1.8		Diameter	1.7	USE 2'-0 D	iameter
$D_{eff}(in) = 1.4D =$	34					

D_{eff} (in)= 1.4D= ft. minimum embedment

=0.5A[1+(1+(1+4.36d/A)^1/2]

2.0

calculations per 2015 PFBDM

Lateral Design

Lateral Desig	çn	1	1710	1710
Project: Martin Wood Job Location: Oak, Creek, O	lrow Colorado 80467		36	1274
a 2a	3 ft. 6 ft.	23 70 68		28 <u>1274</u> 12
		Y X	96 79	
X-Direction: s =	1.0*Sds*[DL _{roof} *L	_{roof} +DL _{wall} *H _{wall} *2 walls	*.375 91 plf.	
P _{wind iz} =	68 plf.		Seismic Governs	
P _{wind ez} =	70 plf.			
P _{wind l/t} =	23 plf.			
s =	1.0*Sds*[DL _{roof} *W	/ _{roof} +DL _{wall} *H _{wall} *2 walls 2.5]*.375 95 plf.	
P _{wind iz} =	79 plf.		Seismic Governs	
P _{wind ez} =	96 plf.			
Diaphragm: Vu _x = _	1274 35 36	plf. V _{allow} =	107 plf (4/3) = 143 plf > Vmax - Use 29 G	a with #9@9o.c.
Vu _y =_	1710 61 28	plf.		
Chord Forces:				
$C_x = T_x =$	$\frac{{\rm wl}^2}{{\rm 8d}} = \frac{123120}{{\rm 224}}$	550 lbs.	T _{allow} = 1235 lbs. > Tmax - Use (1) LS	TA18 Strap
$C_y = T_y =$	<u>wl²</u> 71344 8d 288	248 lbs.		

Endwall:			
	Length =	28 ft.	
	L _{open} =	14 ft.	
	N _{frames}	2 13% 1283 lbs.	
	% Force _{frame} =		
	V =		
	V _u =	92 plf.	V _{allow} = 145 plf (4/3) = 193 plf > Vu - Use 29 Ga with #9@9 o.c.
	N _{posts} =	6	
	P _{lat} = NA	lbs. ftlbs. in. ³	
	M _{lat} = NA		
	S _{read} = NA		
Sidewall:			
	Length =	36 ft.	
	L _{open} =	<mark>21</mark> ft.	
	V =	1274 lbs.	
	V _u =	85 plf.	V _{allow} = 145 plf (4/3) = 193 plf > Vu - Use 29 Ga with #9@9 o.c.

STRUCTURAL NOTES

GENERAL:

- 1. Dimensions: The structural drawings shall be considered as a part of the complete set of Contract drawings, including the drawings of all disciplines. It is intended that the Structural drawings will provide sufficient dimensions to locate the primary structural elements and members. Location of secondary members which are affected by systems detailed by others may require reference to the drawings of other disciplines and layout and coordination by the contractor. If direct conflict between dimensions of two or more disciplines is encountered, such conflicts shall be resolved by the Architect. Do not use scaled dimensions. Use written dimensions or where dimensions are not provided, consult the architect for clarifications before proceeding with the work in question.
- 2. Omissions or conflicts between various elements of the drawings, specifications, notes, and details shall be brought to the attention of the structural engineer and resolved before proceeding with the work. The contractor must submit in writing any requests for modifications to the plans and specifications. Shop drawings submitted to the structural engineer for review do not constitute "in writing" unless it is clearly noted that specific changes are being requested.
- 3. Deferred Submittals: Where Structural components are fully or partially designed and detailed by the supplier or fabricator, complete shop drawings and calculations, signed and sealed by a professional engineer registered in the state where the project is located, shall be submitted to the structural engineer for review. In addition, a copy of these documents shall be submitted to the Building Official for approval in accordance with IBC Section 107.3.4.1.
- 4. The Contract drawings and specifications represent the finished structure. They do not indicate the method of construction. The contractor shall provide all measures necessary to protect the structure during construction. Such measures shall include but not be limited to bracing and shoring for loads due to construction equipment and materials.

DESIGN CRITERIA:

- 1. Used 2021 International Building Code.
- 2. ASD Design Loads:
 - 2.1. Roof: D.L. = 15#/SF., L.L. = 102#/SF. Snow.
 - 2.2. Loft: D.L. = 12#/SF., L.L. = 40#/SF. Accessible Access
- 3. Wind load = 90 MPH (nominal), 115 MPH (ultimate), exposure B, lw = 1.0.
- 4. Seismic: Equivalent Static Force Design Procedure.
 - Seismic Design Category D, Site Class D.
 - Ss = 0.511 SDS = 0.474
 - S1 = 0.096 SD1 = 0.153
 - R = 2.5 Light framed walls w/shear panels all other materials.
 - le = 1.0.

**Per ICC Commentary:

"Wind speeds are designated as "ultimate design" or "nominal design" wind speeds and are used for either strength design or allowable stress designs respectively. The ultimate design wind speeds are indicated in Figures 1609A, B & C, and vary based on the building's risk category and location. The ultimate design for wind speeds for a Risk Category II building vary from 110 mph on the West Coast to 180 mph in hurricane-prone areas in southern Florida. These wind speeds would convert to a nominal design wind speed, or what was previously called the "basic wind speed" 85 mph for the West Coast and 139 mph for southern Florida when using allowable stress design."

QUALITY ASSURANCE:

FOUNDATIONS:

- 1. Followed recommendations from soils investigation report No. 23-12920 prepared by NorthWest Colorado Consultants, Inc. dated Jan. 20, 2023.
- 2. Maximum foundation soil bearing pressure used = 3000#/SF.

MATERIALS:

CONCRETE:

- Mix design shall be established in accordance to Chapter 5 of ACI 318. 1
- 2. Minimum foundation cement content = 376#/YD.
- 3. Maximum slump = 4".
- Foundation 28 day strength f'c = 2,500 PSI. Special inspection not required per 4 IBC 1705.3, exception 2.
- 5. Pre-Engineered Perma-Column 28 day strength fc = 10,000 PSI. *(If using Perma Column's)*

STRUCTURAL AND MISCELLANEOUS STEEL:

- All steel work shall conform with AISC specifications. 1.
- 2. Bolts ASTM A307 for connections to concrete. Bolts ASTM A325 for steel to steel connections. Bolts to be snug tight except bolts indicated as S.C. to be fully tightened.
- 3. Roof Steel shall be painted 26 Ga, nail strip steel and shall be attached to framing with 1 1/2" x #9 screws with neoprene washers at 9" o.c.
- 4. Wall Steel shall be painted 26 Ga, PBR steel and shall be attached to framing with $1 \frac{1}{2}$ " x #9 screws with neoprene washers at 9" o.c.

LUMBER:

- 1. Sawn lumber for studs, joists, etc.(2x6 or larger) = No.2 Doug Fir larch or SPF 1250 psi, or better.
- 2. 2x4's = Standard Doug Fir larch.
- Posts (Interior) = Triad Building Components MSR SPF. 3.
 - 3.1. 2x8 Post Lam Uppers = 1,950Fb-1.7E
 - 3.2. 2x6 Post Lam Uppers = 1,650Fb-1.5E
 - 3.3. #1 Treated So. Pine Lam when embedment is in contact with ground. (Excludes Perma Columns)
- 4. Posts (Exterior) = Triad Building Components MSR SPF.
 - 4.1. 2x8 Post Lam Uppers = 1,950Fb-1.7E
 - 4.2. 2x6 Post Lam Uppers = 1,650Fb-1.5E
 - 4.3. #1 Treated So. Pine Lam when embedment is in contact with ground. (Excludes Perma Columns)
- 5. Roof Sheathing = $\frac{5}{3}$ ". minimum.
 - 5.1. Nailing = 8d(.131 Ø shank x $2\frac{1}{2}$ " long) or $1\frac{1}{2}$ " x 16Ga. staples at 6" o.c. all supported edges, 12" o.c. in field.
- 6. Wall Sheathing = $\frac{7}{16}$ ", minimum.
 - 6.1. Nailing = 8d(.131 Ø shank x $2\frac{1}{2}$ " long) or $1\frac{1}{2}$ " x 16Ga. staples at 6" o.c. all supported edges, 12" o.c. in field.
- 7. All nails are to be common nails unless noted otherwise.
- For connections of "SIMPSON" hardware or equivalent follow manufacturers 8. recommendations.
- 9. Trus-Joist products:
 - 9.1. Roof joists shown as TJI etc. shall be designed for the loads specified and shall conform to Trus-Joist specification.
 - 9.2. Joists exceeding 24' in length shall be cambered to a standard radius of R = 2250.
 - Any alternate joist system(s) shall be the same depth and load Carrying 9.3. capacity as the Trus-Joist system show on the drawings.
 - 9.4. Micro Lam (LVL) E-1,900,000 psi.

10. Premanufactured Trusses

- 10.1. Truss Loading:
 - Top Chord D.L. = 8 PSF. Bottom Chord D.L. = 7 PSF.
 - Top Chord L.L. = 102 PSF.
- 10.2. Member Properties:
 - Chords shall be #2 Douglas Fir or better. Webs shall have minimum Modulus of Elasticity of 1,500,000 psi. constructed with approved plates.
- 10.3. All truss blocking shall be provided by the truss manufacturer and
- 10.4. Truss Manufacturer shall verify all truss dimensions, accounting for tolerances, connections, and splice requirements.
- 10.5. Truss profiles shown are representations of possible configurations of Web locations and member sizes. Truss manufacturer shall submit shop drawings for approval. All trusses shall be designed by a registered professional engineer and all shop drawings shall be stamped and signed by a registered professional engineer.
- 10.6. Truss manufacturer shall provide proof of approved third party I inspection as required by IBC chapter 2303.4.
- 10.7. Truss manufacturer shall design all truss to truss connections and shall indicate said connections on the shop drawings.
- 10.8.1. Manufacturers identity. 10.8.2. Design Load.
- 10.8.3. Truss spacing.
- 11. All lumber in contact with concrete, masonry, or ground shall be preservative treated wood in accordance with AWPA standards. Posts embedded in the ground shall comply with UC4B .60 treatment or greater.

ROOF SNOW LOAD FACTORS Pf = 0.7(Ce)(Ct)(I)Pg

Elevation Ground snow Importance Thermal (Ct) Exposure (Ce) Slope (Cs)

Roof Snow (Pf)

- Bottom Chord L.L. = 2 PSF. Does not act concurrently with top chord L.L.

- 10.8. Each truss shall be marked with the following information:

Ŋ.

JOB NO

SHEET

14167

SO

= 8004 ft. = 143 psf.

- = 1.0 = 1.1 = 1.0 = 0.93
- = 110.00Sloped Roof Snow (Ps) = 102.00

_											
FOOTING SCHEDULE											
MARK	"D"	DEPTH	POST - LOWER	POST - UPPER	DETAIL	BELL - WIDTH	BELL - DEPTH				
F1	2'-0"Ø	4'-0"	Perma-Column 8300	(3) 2x8 SPF	2/S3						
F2	2'-0"Ø	5'-0"	Perma-Column 8300	(3) 2x8 SPF	2/S3	3'-0"Ø	12"				
F3	2'-0"Ø	4'-0"	Perma-Column 6400	(4) 2x6 SPF	2/S3						
F4	2'-0"Ø	4'-0"	Perma-Column 6300	(3) 2x6 SPF	2/S3						

FOUNDATION PLAN

SCALE: 1/8" = 1'-0"

FOUNDATION NOTES:

OSB SHIMS & TYP. NAILING ON FACES OF PERMA COLUMN POSTS TO FLUSH OUT WHERE NEEDED.

INSTALL R-10 FROST BARRIER UNDER SLAB, SEE DETAIL 4/S4.1

4" CONCRETE SLAB UNDER EA. LEANTO. SEE DETAIL 5/S4.1

STAIR STRINGERS SHALL BE 1 3/4"x 14 LVL TYP.

MIN. RUN = 10" MAX RISE = 7 3/4"

FRAMED STAIR HANDRAILS TO BE INSTALLED I.A.W. 2021 IRC. R311.7

PROVIDE 2x8 STRONGBACKS ON INSIDE FACE OF UNBRACED POSTS. ATTACH w/(2) 16d @ 12" O.C. TYP.

2x6 STUDS FRAMED @ 16" O.C. w/PT 2x SILL PLATE w/MIN. $\frac{1}{2}$ "Øx2 $\frac{3}{4}$ " EXPANSION ANCHORS AND STD. WASHERS @ 5' O.C. & 12" FROM ENDS.

ROOF FRAMING NOTES:

LSTA18 STRAP- PLACE AT INSIDE OF FASCIA BOARD IF NO OVERHANGS. PLACE AT INSIDE FACE OF TOP

CONFIRM WINDOW & MAN DOOR LOCATIONS

GABLE EXTENSION PURLINS TO BE SAME SIZE & HALF SPACING AS TYP. PER PLANS.

ROOF FRAMING PLAN DATE Ŋ. AMERICAINCE AND A MERICAINC S MARTIN WOODROW OST DRAWN c₩ DATE

11/22/24

14167

S2.2

JOB NO

SHEET

SUPPORT

- (1) 2x8 TRIMMER
- (1) 2x6 TRIMMER (1) 2x6 KING
- (1) 2x6 TRIMMER (1) 2x6 KING

