

MiTek USA, Inc. MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661 Telephone 916-755-3571

Re: 1930952 Trank

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Timber Roots MTD-Dolores, CO.

Pages or sheets covered by this seal: R61573046 thru R61573055

My license renewal date for the state of Colorado is October 31, 2021.

March 17,2020

Dyer, Cecil

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

REPAIR: MODIFY LOADS AS SHOWN IN NOTES.

		5-3-0		10-2-8	1	15-2-0	20-1	-8		:	25-1-0	30-4-0	
		5-3-0	1	4-11-8		4-11-8	4-11	-8	1		4-11-8	5-3-0	
Plate Offsets ()	X,Y) [2:1- ⁻	10-5,0-2-8], [2:	:0-0-2,0-7-	4], [4:0-6-0,0-4-8], [5:0-0-12,	0-1-12], [8:0-0	6-0,0-4-8], [10:0-5·	-12,0-3-4	4], [11:	0-0-0,0-0	0-15], [14:0-9-0),0-5-4]	
LOADING (net	f)												
TCLL (roof)	20.0	SPAC	ING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf)	100.0	Plate (Grip DOL	1.00	тс	0.93	Vert(LL)	-0.81	14	>451	240	MT20	185/144
	10.0	Lumbe	er DOL	1.00	BC	0.96	Vert(CT)	-0.97	14	>376	240	MT20HS	139/111
BCU	0.0 *	Rep S	tress Incr	NO	WB	0.94	Horz(CT)	0.62	11	n/a	n/a	MT18HS	185/144
BCDI	10.0	Code	IRC2018/	TPI2014	Matr	x-MS						Weight: 184 lb	FT = 20%
DODE	10.0	1											
LUMBER-							BRACING-						[PSA]
TOP CHORD	2x6 HF/SPF	1650F 1.5E *	Except*				TOP CHORD	Struct	tural wo	ood shea	thing directly a	applied or 1-6-15 oc pu	rlins.
	1-4: 2x8 DF	1950F 1.7E					BOT CHORD	Rigid	ceiling	directly	applied or 10-0)-0 oc bracing.	
BOT CHORD	2x6 SPF 210	00F 1.8E											
WEBS	2x4 HF/SPF	1650F 1.5E											
SLIDER	Left 2x6 HFS	SPF 1650F 1.5	5E 2-11-12	2, Right 2x8 DF 19	950F 1.7E 4	1-9-0							
REACTIONS.	(lb/size) 2	2=4189/0-5-8	(min. 0-5-4	4), 11=3691/0-5-8	6 (min. 0-4-	11)							
	Max Horz 2	2=102(LC 16)											
	Max Uplift 2	?=-42(LC 16), *	11=-15(LC	: 17)									
	Max Grav 2	2=4337(LC 23)	, 11=3849	(LC 24)									
FORCES. (lb	o) - Max. Com	p./Max. Ten	All forces	250 (lb) or less e	xcept when	shown.							
TOP CHORD	1-2=0/342	, 2-3=-1756/48	34, 3-4=-8	711/86, 4-25=-90	69/63, 5-25	=-8995/76, 5-	6=-10282/52,						
	6-26=-880	04/5, 7-26=-86	99/21, 7-2	7=-8699/27, 8-27	'=-8811/11,	8-9=-10373/	19,						
	9-28=-934	2/34, 10-28=-9	9452/18, 1	0-29=-1138/38, 1	1-29=-1363	3/30							
BOT CHORD	2-16=-129	/7501, 16-30=	-88/10017	, 15-30=-75/1004	7, 14-15=-9	9/9371, 13-14	=0/9447,						
	13-31=0/1	0133, 12-31=0	0/10103, 1	1-12=-10/8174									
WEBS	7-14=0/57	67, 8-14=-211	9/120, 8-1	3=-97/740, 9-13=	-522/383, 9	-12=-1795/19	Э,						
	10-12=0/9	59, 6-14=-204	5/109, 6-1	5=-89/772, 5-15=	-546/369, 5	5-16=-2158/26	S,						
	4-16=0/12	88											
NOTES-													
1) Unbalanced	roof live load	ls have been c	considered	for this design.									
2) Wind: ASCE	7-16: Vult=1	15mph (3-sec	ond aust)	Vasd=91mph: TC	DL=6.0psf:	BCDL=6.0ps	f: h=25ft: Cat. II: E	xp B: Ei	nclosed	1:			
MWFRS (er	velope) gable	e end zone and	d C-C Exte	erior(2E) -2-1-6 to	1-0-10. Int	erior(1) 1-0-1	0 to 15-2-0. Exterio	or(2R) 1	5-2-0 t	0 18-2-6		00000	
Interior(1) 18	8-2-6 to 30-4-	0 zone: cantile	ever left ar	d right exposed :	end vertica	I left and righ	t exposed:C-C for	membe	rs and	forces &		an	alle
MWFRS for	reactions sho	wn: Lumber D	OOL=1.60	plate grip DOL=1	.60	5						C AD	LICENT
3) TCLL: ASCE	E 7-16: Pr=20	.0 psf (roof LL	: Lum DOI	=1.00 Plate DOL	=1.00): Pf=	100.0 psf (Lu	m DOL=1.15 Plate	DOL=1	1.15): [s=1.0:		BUON	·····
Rough Cat E	B: Partially Ex	p.: Ce=1.0: Cs	s=1.00: Ct	=1.10	,,					,		S C CIL	Drooth
4) Unbalanced	snow loads h	nave been con	sidered fo	r this design.								8 CF	10 N
5) This truss ha	as been desid	ned for greate	er of min ro	of live load of 12	.0 psf or 2.0	0 times flat ro	of load of 100.0 p	sf on ov	erhand	IS		8 :	
non-concurr	ent with other	live loads.											
6) All plates ar	e MT20 plate	s unless other	wise indica	ated								g PE.UL	100302 2
7) The Fabrica	tion Toleranc	e at ioint 12 =	18%. ioint	10 = 17% ioint 1	5 = 17%, ic	int 5 = 18%						N	\wedge
8) This truss ha	as been desid	ned for a 10 0) psf bottor	m chord live load	nonconcur	ent with any o	other live loads					AD.	88
9) * This truss	has been des	igned for a live	e load of 2	0 0psf on the bot	tom chord i	n all areas wh	ere a rectangle 3-	6-0 tall h	ov 2-0-0) wide		420 ····	A A A
will fit betwe	en the botton	h chord and ar	v other m	embers		i al alcao mi	loro a rootarigio o	0 0 1011 1	, 20	5 mao		The contraction	·
10) Bearing at	ioint(s) 2 11	considers par	allel to ara	in value using AN	ISI/TPI 1 ar	ale to arain fo	ormula Building d	esigner	should	verify		UNS/ON	
capacity of	f bearing surfa		unor to gru			igio to grain it	onnaid. Danaing a	oolgiloi	onoula	vonity		am	Com
11) Provide me	echanical con	nection (by oth	hers) of tri	iss to bearing pla	te canable i	of withstandin	a 42 lb unlift at ioi	nt 2 and	15 lh i	inlift at		Moreh 17	2020
ioint 11				ice to bearing pla	is supuble (g io apint at joi			.p.iit ut		warch 17,	2020
Continued on p	200.2												
	aye z	noromotoro card l					CE MII 7472 rov 40/02/			_			
	for use only with	MiTek® connecto	rs This deel	n is based only upon	narameters sh	own and is for a	n individual building co	moonent r	one USE	-			
a truss syste	em. Before use, th	e building designe	er must verify	the applicability of de	sign paramete	rs and properly in	corporate this design in	nto the ove	erall				
building desi	ign. Bracing indic	ated is to prevent	buckling of in	ndividual truss web an	d/or chord me	nbers only. Addi	tional temporary and po	ermanent b	bracing			MiTek °	
is always req	quired for stability	and to prevent co erection and braci	ind of trusses	and truss systems	and property	uamage. For ger	Criteria DSB-89 and	ig the BCSI Buil	ldina Co	mnonent		MiTek USA, Inc.	
Safety Infor	mation available	e from Truss Plate	Institute, 218	3 N. Lee Street, Suite	312, Alexandri	a, VA 22314.	5	200, Duii		ponem		400 Sunrise Avenue, Sui	te 270
												Roseville, CA 95661	

Job	Truss	Truss Type	Qty	Ply	Trank
1930952	T01 REF	SCISSORS	11	1	R61573046
1000002	Tot_Ref				Job Reference (optional)
BFS, Grand Junction, Co 81501				8	3.240 e Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 08:33:29 2020 Page 2
		ID:ZZQ	wrgzbkHIE	OlsjnxARp	yxp?W-32SC7jlHdDA47D3NPRZCGoNoPMPWc6fby_IQOBzaO4q

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 45 lb down and 1 lb up at 7-7-0, and 45 lb down and 1 lb up at 15-2-0, and 45 lb down and 1 lb up at 22-9-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-7=-220, 7-11=-220, 14-17=-20, 14-21=-20 Concentrated Loads (lb)

Vert: 14=-45 30=-45 31=-45

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REPAIR: MODIFY LOADS AS SHOWN IN NOTES.

SHOP FABRICATE SCAB TRUSS (SHOWN AS SHADED AREA ON TRUSS DESIGN DRAWING) USING THE LUMBER AND PLATES INDICATED. ATTACH SCAB TRUSS TO EACH FACE OF EXISTING TRUSS WITH (0.131" X 3") NAILS (INTO ALL ALIGNING MEMBERS) PER THE FOLLOWING NAIL SCHEDULE: 2 x 4's - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 3" O.C. USE 2" MEMBER END DISTANCE.

	—	5-3-0	10-2-8		15-2-0		20-1-8		25-1-0 4-11-8	30-4-0	
Plate Offsets (X	(,Y) [2:0-1-	9,0-3-12], [6:0-5-0,0-4-	8], [8:0-5-3,0-1-7]	, [8:0-1-8,0	-0-0], [11:0-5-	0,0-4-8], [12:0-0)-0,0-0-0], [1	4:0-4-0,0-1	-12]		
LOADING (psf) TCLL (roof) Snow (Pf) TCDL BCLL BCDL) 20.0 100.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 1.00 1.00 NO IPI2014	CSI. TC BC WB Matri	0.93 0.84 0.58 ix-S	DEFL. Vert(LL) Vert(CT) Horz(CT	in (-0.69 -0.84) 0.57	loc) l/de 16 >51 16 >43 12 n/	fl L/d 8 240 1 240 a n/a	PLATES MT20 MT20HS MT18HS Weight: 336 lb	GRIP 185/144 139/108 185/148 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x6 HF/SPF 1 11-12: 2x6 SP 2x6 SPF 2100 2x4 HF/SPF 1 9-14: 2x4 SPF (lb/size) 2= Max Horz 2= Max Uplift 2= Max Grav 2=	650F 1.5E *Except* 2F 2100F 1.8E, 1-3: 2x8 650F 1.5E *Except* 5 Stud, 8-14: 2x6 HF/SF 4175/0-5-8 (min. 0-2-1 83(LC 16) -46(LC 16), 12=-16(LC 4333(LC 23), 12=3814	3 DF 1950F 1.7E PF 1650F 1.5E 0), 12=3649/0-5- 17) (LC 24)	8 (min. 0-2	2-5)	BRACING- TOP CHORD BOT CHORD	Structur Rigid ce	al wood sh iling direct	eathing directly	y applied or 4-6-10 oc p 0-0-0 oc bracing.	urlins. [PSA]
FORCES. (Ib) TOP CHORD	- Max. Comp. 2-19=-12852 5-6=-13166/ 8-9=-12985/ 12-24=-1336 2-18=-142/1	/Max. Ten All forces : 2/82, 3-19=-12767/85, 3 (24, 6-21=-10612/0, 7-2 (0, 9-10=-13234/0, 10-2 69/36 1456 18-2587/1368(250 (lb) or less e: 3-4=-12482/100, 1=-10507/0, 7-22 3=-13376/0, 11-2	ccept when 4-20=-1327 2=-10506/0 23=-13451/ 11_16-17-/	shown. 7/41, 5-20=-1 , 8-22=-10606 0, 11-24=-130	3214/53, 5/0, 166/47, 6-0/11864					
WEBS	2-10142/1 14-15=0/118 7-16=0/7108 6-16=-2891/ 9-14=-264/2	345, 14-26=0/13645, 13 3, 8-16=-2865/128, 10- 122, 6-17=0/1168, 5-1 1, 8-14=-18/1376	3-26=0/13614, 12 14=-1223/105, 10 7=-1403/105, 5-1	-13=-14/12 -13=-1182/ 3=-1458/59	005 /38, 11-13=0/8), 4-18=0/1140	376,),					
NOTES- 1) 2-ply truss to Top chords of Bottom chord Webs conne 2) All loads are ply connectio 3) Unbalanced 4) Wind: ASCE MWFRS (en: Interior(1) 18 MWFRS for 5) TCLL: ASCE Rough Cat B 6) Unbalanced 7) This truss ha non-concurre 8) All plates are 9) N/A (10))If his trussel	b be connected connected as follows coted as follows considered eq ons have been roof live loads 7-16; Vult=11 3-2-6 to 30-1-4 reactions show 7-16; Pr=20.0 3; Partially Exp snow loads ha as been design ent with other li	I together with 10d (0.1 ollows: 2x8 - 2 rows sta as follows: 2x6 - 2 rows s: 2x4 - 1 row at 0-9-0 c ually applied to all plie: provided to distribute of have been considered 5mph (3-second gust) ' end zone and C-C Exte zone; cantilever left an vn; Lumber DOL=1.60 p) psf (roof LL: Lum DOL .; Ce=1.0; Cs=1.00; Cti- ve been considered foi ted for greater of min ro ive loads. unless otherwise indica	31"x3") nails as fi ggered at 0-90 o staggered at 0-90 o staggered at 0-90 o c, 2x6 - 2 rows s s, except if noted only loads noted a for this design. /asd=91mph; TC rior(2E) -2-1-6 to d right exposed ; olate grip DOL=1 =1.10 this design. of live load of 12 tted.	bllows: c, 2x6 - 2 -0 oc. aggered at as front (F) is (F) or (B) DL=6.0psf; 0-11-0, Int end vertica 60 =1.00); Pf= 0 psf or 2.0	rows staggere : 0-9-0 oc. or back (B) fi), unless othe BCDL=6.0ps erior(1) 0-11-1 al left and righ :100.0 psf (Lu)0 times flat ro	d at 0-7-0 oc. ace in the LOAE wise indicated. f; h=25ft; Cat. II 0 to 15-2-0, Exte t exposed;C-C f m DOL=1.15 PI pof load of 100.0	CASE(S) s ; Exp B; Enc prior(2R) 15- or members ate DOL=1.1) psf on over	ection. Ply losed; 2-0 to 18-2 and forces 5); ls=1.0; hangs	to -6, &	PE.0 March 17	0 <i>LICENS</i> DV 10 055362 VAL
Design valid f building desig is always req fabrication, st Safety Inform	age 2001 design pa for use only with M n. Before use, the gn. Bracing indicat uired for stability at torage, delivery, er nation available f	arameters and READ NOTES iTek® connectors. This design building designer must verify ted is to prevent buckling of ir nd to prevent collapse with po- ection and bracing of trusses rom Truss Plate Institute, 216	on this and investigation of the second s	IDED MITEK I Darameters sh sign parameter d/or chord mer and property re Al 312, Alexandri	REFERENCE PAC own, and is for a rs and properly in mbers only. Addi damage. For ger NSI/TPI1 Quality a, VA 22314.	SE MII-7473 rev. 10/0 n individual building corporate this desig tional temporary and teral guidance regar Criteria, DSB-89 an	2007/2015 BEFOR component, not n into the overa d permanent bra ding the and BCSI Buildin	E USE. Il cing ng Compone	nt	MiTek USA, Inc. 400 Sunrise Avenue, S Roseville, CA 35661	uite 270

Job	Truss	Truss Type	Qty	Ply	Trank	
1020052	TOICE B1	SCISSORS	1		R61	1573047
1930932	IUIGE_RI	50155045	'	2	Job Reference (optional)	
BFS, Grand Junction, Co 81501					8.240 e Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 09:18:05 2020 Pag	ge 2
		ID:ZZ	ZQIwrgzbk	HIEOlsjn>	ARpyxp?W-js8rmk8rQQJO9TehARakj6C6C4IScTkUJJX0K5zaNI	R0

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 12) Bearing at joint(s) 2, 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 2 and 16 lb uplift at joint 12.
- 14) Following joints to be plated by qualified designer: Joint(s) 8, not plated.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 45 lb down and 1 lb up at 7-7-0, and 45 lb down and 1 lb up at 15-2-0,
- and 45 lb down and 1 lb up at 22-9-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-7=-220, 7-12=-220, 2-16=-20, 12-16=-20
 - Concentrated Loads (lb)
 - Vert: 16=-45 25=-45 26=-45

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2314.

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

MiTek

Job	Truss	Truss Type	Qty	Ply	Trank
1930952	T02 REF	SCISSORS	1	1	R61573049
1000002					Job Reference (optional)
BFS, Grand Junction, Co 81501				8	3.240 e Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 09:49:57 2020 Page 2
		ID:Z	ZQIwrgzbl	HIEOlsjnx	ARpyxp?W-kigf2WHA8uC5Ylo9B?t5DJOtqpIsb7KvznhCRGzaMz8

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 45 lb down and 1 lb up at 7-7-0, and 45 lb down and 1 lb up at 15-2-0, and 45 lb down and 1 lb up at 22-9-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-220, 5-9=-220, 12-15=-20, 12-19=-20 Concentrated Loads (lb)

Vert: 12=-45 29=-45 30=-45

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

400 Sunrise Avenue, Suite 270 Roseville, CA 95661

Job	Truss	Truss Type	Qty	Ply	Trank
					R61573050
1930952	T03_REF	SCISSORS	1	1	
					Job Reference (optional)
BFS, Grand Junction, Co 81501					8.240 s Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 09:51:57 2020 Page 2

ID:ZZQIwrgzbkHIEOIsjnxARpyxp?W-Dnw0EYjStlK4xlzDDB1E4dMShBEaiR7ZZSmYfJzaMxG

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-257, 6-9=-257, 12-15=-23, 12-19=-23 Concentrated Loads (lb)

Vert: 12=-25

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Trank
					R61573051
1930952	T03A_REF	SCISSORS	14	1	
					Job Reference (optional)
BFS, Grand Junction, Co 81501				8	3.240 s Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 09:53:48 2020 Page 2

8.240 s Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 09:53:48 2020 Page 2 ID:ZZQIwrgzbkHIEOIsjnxARpyxp?W-T87_XV34ksJKmozYD?WG41SPRx8nDgPv5D8w2NzaMvX

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-220, 12-15=-20, 12-19=-20, 6-9=-220 Concentrated Loads (lb)

Vert: 12=-25

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek USA, Inc 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

Job	Truss	Truss Type	Qty	Ply	Trank
					R61573052
1930952	T03GE_R1	GABLE	1	2	
				–	Job Reference (optional)
BFS, Grand Junction, Co 81501					8.240 s Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 09:57:38 2020 Page 2

ID:ZZQIwrgzbkHIEOIsjnxARpyxp?W-kO1wo8sLaXHhM8YIhJfCOX_cgeg96hzmz0s462zaMrx

NOTES-

- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Bearing at joint(s) 2, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 2.
 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 0 lb up at 9-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-5=-220, 5-8=-220, 2-11=-20, 8-11=-20 Concentrated Loads (lb)
 - Vert: 11=-25

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

besign value for use only with with with exercising its based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

Job	Truss	Truss Type	Qty	Ply	Trank	
1930952	T04 REF	SCISSORS	1	1	R61573053	
	101_1121				Job Reference (optional)	
BFS, Grand Junction, Co 81501 8.240 e Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 10:09:34 2020 Page						
		ID:ZZQI	vrgzbkHIE	OlsjnxARp	yxp?W-m8lc4zWTyWV5FBHMehV6QWe4tG?asU19dPlzEYzaMgl	

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 0 lb up at 9-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-257, 6-11=-257, 14-17=-23, 14-21=-23 Concentrated Loads (lb)

Vert: 14=-25

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

400 Sunrise Avenue, Suite 270 Roseville, CA 95661

Job	Truss	Truss Type	Qty	Ply	Trank	
1930952		Sciesor	3	1	R61573054	
1350352		0013301	5	'	Job Reference (optional)	
BFS, Grand Junction, Co 81501 8.240 s Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 10:14:3						
		ID:ZZQIv	/rgzbkHIE(OlsjnxARp	vxp?W-LpDv5GCn7EwpL25_?ETeHrmBoD6WqTK2IMhcSNzaMc_	

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 0 lb up at 9-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-220, 6-11=-220, 14-17=-20, 14-21=-20 Concentrated Loads (lb)

Vert: 14=-25

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Trank
					R61573055
1930952	T04GE_R1	GABLE	1	2	
					Job Reference (optional)
BFS, Grand Junction, Co 81501					8.240 s Feb 7 2020 MiTek Industries, Inc. Mon Mar 16 10:16:48 2020 Page 2

ID:ZZQIwrgzbkHIEOIsjnxARpyxp?W-3eWg9NmilsAWJtSm3qHu?2c8VD7RYpz1QwRxTOzaMZz

NOTES-

- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Bearing at joint(s) 2, 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 2 and 31 lb uplift at joint 9.
 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 0 lb up at 9-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-5=-220, 5-10=-220, 2-13=-20, 9-13=-20 Concentrated Loads (lb)
 - Vert: 13=-25

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁰⁾ Gable studs spaced at 1-4-0 oc.

