

February 24, 2025

Mrs. Sarah Foreman, PE Environmental Protection Specialist Colorado Department of Public Health and the Environment Solid Waste and Materials Management Program 4300 Cherry Creek Drive South, B-2, Denver, CO 80246 sarah.foreman@state.co.us

RE: 2024 Second Semi-Annual Leachate Management Report

Ms. Foreman:

Attached you will find Twin Landfill's 2024 Second Semi-Annual Leachate Management Report for our facility in Milner, CO. The purpose of this report is to satisfy the requirements of Milner Landfill's Engineering Design and Operations Plan (EDOP), Appendix G Leachate Management Plan, Section 6.0 Semi-Annual Leachate Management Reporting. Should you have any questions about this report, please do not hesitate to contact me.

Sincerely,

Jacie & Compl

Lacie Coupe, General Manager Twin Landfill

CC: Alan Goldich, Routt County Planning Department Scott Cowman, Routt County Environmental Health Director Rebecca Lindeman, PE, Jardon E&I

Milner Landfill – 2024 Second Semi-Annual Leachate Management Report

This report covers leachate management activities between July 1, 2024, and December 31, 2024. The following topics are covered in this report per Milner Landfill's EDOP, Appendix G Leachate Management Plan, Section 6.0 Semi-Annual Leachate Management Reporting.

Section 1. Leachate sources

- Section 2. Leachate volumes
- Section 3. Methods of disposal

Section 4. Locations of leachate management/disposal activities

Section 5. Inspection results, including copies of all inspection forms

Section 6. Weekly leachate tank and leachate pond freeboard measurements, including copies of all inspection forms

Section 7. Leachate seeps, spills, leaks, or other unusual incidents

Section 8. Changes to chemical makeup of the leachate that would affect disposal activities

Section 9. Results of laboratory analysis from leachate sampling

Section 10. Module 1 LCRS sump weekly leachate level measurements

Section 11. Summary of all deficiencies and their resolutions (e.g., leachate seeps, spills, freeboard exceedance, etc.)

Section 1. Leachate sources

Leachate water is collected from four sources at Milner Landfill. The Module 1 sump collects leachate from the Phase 1 area of Milner Landfill. The Pit 5&6 leachate collection and removal system (LCRS) tank collects leachate water from the unlined area of Milner Landfill's Pits 5 and 6. The compost pond collects runoff from the compost pad, where composting of biosolids occurs. The liquid waste transfer unit containment (basin) sump only collects stormwater that falls within the containment boundary. Milner Landfill's Leachate Holding Pond (LHP) was placed into service on September 28, 2020, and is a temporary holding and evaporation pond for the four leachate sources.

Section 2. Leachate volumes

A total of 182,500 gallons of leachate water was removed from the Mod 1 sump and was transported directly to the Steamboat Springs Wastewater Treatment Plant (WWTP) for disposal.

No leachate water was removed from the LHP during this reporting period.

A total of 16,500 gallons of leachate water was removed from the Pit 5&6 LCRS tank during this reporting period and transported to the WWTP for disposal.

No runoff water was removed from the compost pond during this reporting period.

A total of 1,000 gallons of leachate water was removed from the basin and transported directly to the WWTP for disposal.

A total of 200,000 gallons of leachate water was managed by Milner Landfill personnel during the second half of 2024. Leachate water collection logs and discharge logs are shown in Appendix A.

Section 3. Methods of disposal

Milner Landfill's primary method for leachate disposal is at the Steamboat Springs wastewater treatment plant.

Section 4. Locations of leachate management/disposal activities

Milner Landfill – Leachate Holding Pond 20650 County Road 205 Steamboat Springs, CO 80487

Steamboat Springs Wastewater Treatment Plant 39565 County Road 33 Steamboat Springs, CO 80487

Section 5. Inspection results

Monthly leachate collection system inspection forms are included in Appendix B.

Section 6. Leachate tank freeboard measurements and leachate pond freeboard measurements

The LHP was in service during the reporting period, but only acts as temporary leachate water storage prior to transportation to the WWTP. Leachate pond level logs are included in Appendix F.

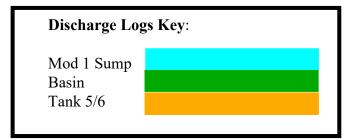
Section 7. Leachate seeps, spills, leaks, or other unusual incidents

None of these items were identified during inspections, as recorded on the monthly forms, found in Appendix B.

Section 8. Changes to chemical makeup of leachate that would affect disposal activities

There were no known changes to the chemical makeup of leachate that would affect disposal activities during the reporting period. The WWTP has not issued any influent limits at this time.

Section 9. Results of laboratory analysis from leachate sampling


The Mod 1 leachate sump and Tank 5/6 were sampled in October 2024. The laboratory reports are found in Appendix D of this report.

Section 10. Module 1 LCRS sump weekly leachate level measurements

Weekly Module 1 Leachate Sump Inspection Forms can be found in Appendix E of this report.

Section 11. Summary of all deficiencies and their resolutions No deficiencies were noted during the reporting period.

Appendix A Leachate Collection and Discharge Logs

BUSINESS NAME: THIN ENVIRO	TIME PERIOD:		CUSTOMER	R#:
ADDRESS: DRIVERS NAME:		TOT/	CK CAPACITY:	. 8575
NAME & ADDRESS OF CUSTOMER	DIVIDUAL LOAD INFO		NE:	
TUP!	GALLONS	DATE 7-2	TIME OF DISCHARGE	DRIVER NAME/INITIALS
TWES	700 200	7/3	1100	
TUU Merel 1	CONTRES 15	7-4	6.00	Aca
TIJPJ	6000	7-8	AM	4mn
Impo	200	7.8	8.20	Mad

COMMENTS:

1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

PLANT OPERATORS NAME:

. .

1368

SEPTIC TANK HAULERS GALLONS DISCHARGED TO STEAMBOAT SPRINGS REGIONAL SEWAGE SYSTEM						
TT C T		12624	CUSTOMER	#:		
BUSINESS NAME: TWIN ENVIRO	/	[']				
ADDRESS:		TRUC	CK CAPACITY:			
			L GALLONS DISCHARGED	17,900		
DRIVERS NAME:		PHO	NE:			
INDIVII	DUAL LOAD INFO	RMATION				
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS		
TWPJ	300	7.9	7:30	Mee		
TWPJ	600	7-9	AM	MB		
mad 1	6000	7-5	AM	Lynn		
mod 1	6000	7-8	Am	Lynn		
5/6	3000	7-8	Am	Lym		
TV.PJ	650	7/10	AM	Kal		
TWIJ	550	7/11	AM	RU		
TINRJ	400	7-11	PM	MB		
TWPJ	700	7-11	PM	RW		
PLANT OPERATORS NAME:		COMMENTS:				

SEPTIC TANK HAULERS GALLONS DISCHARGED TO S TEM

1	EAMBOAT	SPRINGS	REGIONAL	SEWAGE	SY	S
		01111100	REGIONAL	SEVVAGE	SY	S

TIME PERIOD:

Win enviro

_____ CUSTOMER #:_____

1386

ADDRESS:	
TUDDILLOO.	

TRUCK CAPACITY:

DRIVERS NAME:

BUSINESS NAME:

TOTAL GALLONS DISCHARGED: 13, 850 PHONE:

INI	DIVIDUAL LOAD INFO	ORMATION	Martin and the strend	
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
TWPJ	300	7.19	1:40	Man
TWRS	650	7/22	11:09	VI
1 WPJ	300	7.23	2:45	MA
	500	7-29	HM	MAS -
I WP+	700	7.26	2:40	11 _22
IWIS	400	7/26	1805	V
mod	5000	7-22	<i>pm</i>	Lunn
5/6	1000	7-22	Am	Lunn
PLANT OPERATORS NAME:	5000	7	Am .	Lynn
		COMMENTS:		
				1

TIME PERIOD:_____ CUSTOMER #:_____

		-
BUSINESS NAME:	Iwin	Enviro
ADDRESS:		

TRUCK CAPACITY:____ TOTAL GALLONS DISCHARGED: 11,230

DRIVERS NAME:____

PHONE:____

INDIVIDUAL LOAD INFORMATION						
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS		
TUPJ	500	7-26	PM	MAZ		
TWRI	500	7/29	AM	Kill		
TUPI	150	7/72	Part			
Mod I	2000	7-29	Am	Lynn		
TwpJ	200	7.31	7:30	MAN		
1 WrJ	180	8.1	7:30	Med		
TWFJ	400	8.1	7:30	Worked		
ThR	SOU		2:49 PM	2		
TwpJ	200	8.2	9:10	1191		
PLANT OPERATORS NAME:	6000	COMMENTS: 8-2	AM	Lynn		

1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

1388

SEPTIC TANK HAULERS GALLONS DISCHARGED T

TO	STEAMBOAT S	PRINGS REGIONAL	SEWAGE SYSTEM	
TWIN	ENVIE0	TIME PERIOD:	CUSTOMER #:	

BUSINESS NAME:
ADDRESS:

TRUCK CAPACITY:

15,550 _ TOTAL GALLONS DISCHARGED:___

DRIVERS NAME:

PHONE:

INDIVIDUAL LOAD INFORMATION								
NAME & ADDRESS OF CUSTOMER	ł	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS			
TWF.T	:	600	5/12	1: 30 pm	64			
TWPJ		600	8/13	7:30AM				
Mod	5	6000	8/9	Am	Lynn			
m-d 1	F	55000	5/12	Am	GUND			
TWPJ	:	350	814	AM	Pil			
TWPJ		600	\$14	THOPM	CL			
TWPS	•	250	8/14	7130	Dest Dili			
TWO		750	845	Han	p on part			
75. FJ-		400	2: / in	1:15	Then			
PLANT OPERATORS NAME:			COMMENTS:	ind i be	at and the second se			

BUSINESS NAME TWIN CHUNO	TIME PERIOD:		CUSTOMER	<i>!</i> #:		
ADDRESS: DRIVERS NAME:			TRUCK CAPACITY:			
IND	IVIDUAL LOAD INF	ORMATION				
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS		
Mod 1	3000	8-16	Am	16.000		
Mod 1	6000	8-19	Am	10,000		
5/6	9000	8-19	AM			
TURT	407	12-30	AM	111		
TUPT	175.	8-21	Atom	A. Li		

L.

11

7÷

ير لنه

de l'

All flue.

(4)/2.1

17

14

COMMENTS:

500

17

94.5

i

1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

 (\mathcal{A})

W PT

.

PLANT OPERATORS NAME:

.

1408

1-1

~[...

BUSINESS NAME: TICK, Stiller	TIME PERIOD:_		CUSTOME	? <i>#</i> :
ADDRESS:		TOT/	CK CAPACITY:	6,500
TWPI TWPI Mod 1	DIVIDUAL LOAD INF GALLONS GALLONS JEGO JEGO GACOO	ORMATION DATE 8-30 8-30 8-30	Atm 11:10AM	DRIVER NAME/INITIALS
ANT OPERATORS NAME:		COMMENTS:		

1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

1414 .

1411

. .

SEPTIC TANK HAULERS GALLONS DISCHARGED TO STEAMBOAT SPRINGS REGIONAL SEWAGE SYSTEM

	TIME PERIOD:		CUSTOMER	#:
BUSINESS NAME: TWIN CAVINO				
ADDRESS:		TRUC	K CAPACITY:	
			L GALLONS DISCHARGED	. 11,460
DRIVERS NAME:			IE:	
IND	IVIDUAL LOAD INFO	DRMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
TWPS	250	8-23	1:40 pm	DIG
TWPS	450	8/26	0820	K
TWP3	250	8126	1:15	Din
TWPJ	400	8/20	0511	CLC
mat t	Seeco	9/. 1	P.a.	Lynn
Mail .	40000	M.S.S.	1 49	1-3770
TUPS	250	8/27	12:43Pm	Sun
THRI	450	8/26	0905	K
TLIPT	350	8-07	An	TTY
PLANT OPERATORS NAME:		COMMENTS:		

	SEPTIC TA	ANK HAULERS GA	LLONS DIS	CHARGED	
	IO SIEAMBO	OAT SPRINGS REG	IONAL SEV	VAGE SYSTEM	1416
AME: Turin	5	TIME PERIOD:	9/24	CUSTOMER #:	
AVIE: <u>Javin</u>	- C- Willing		/		

BUSINESS NAME: Juin Encive ADDRESS:_

TRUCK CAPACITY:

DRIVERS NAME:

TOTAL GALLONS DISCHARGED:

_ PHONE:___

	NDIVIDUAL LOAD INF	ORMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
Masid	6225	7-3	1120	in man in the second second
Twps	250	9-1	S:00 m	DIAN
TWPJ	250	9-4	2:20pm	Que
- WPO	350	9-5	Pm	RUI
TWPJ	250	9.5	3:08 Km	Dur
Their	400	9-6	AM	TADAT
IWRO	1000	9/6	0818	had
THUP 5	400	9-6	BIRSHAM	then
PLANT OPERATORS NAME:				
	7,900	COMMENTS:		
ST COPY - CITY OF STEAMBOAT SPRINGS AND CODY	and the second sec			

FEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

SEPTIC TANK HAULERS GALLONS DISCHARGED DINOS DEGIONAL SEMASE OVOTEM

TO STEAMBOAT	SPRINGS REGIONAL SE	WAGE SYSTEM	
	TIME PERIOD:	CUSTOMER #:	
BUSINESS NAME: Twin Chuiro			

ADDRESS:___

TRUCK CAPACITY:_____ TOTAL GALLONS DISCHARGED:

DRIVERS NAME:______PHONE:____PHONE:_____PHONE:_____PHONE:_____PHONE:____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:____PHONE:____PHONE:____PHONE:____PHONE:___PHONE:___PHONE:___PHONE:___PHONE:___PHONE:__PHONE:__PHONE:__PHONE:_P

INDIVIDUAL LOAD INFORMATION					
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS	
TWP5	200	9/27	2:15 Pm	PM	
TUPJ	350	9/30	0540	K	
mad 1	3000	9/30	10:00	Lynn	
TWPS	250	9/30	2:15Pm	Am	
TWPJ	200	10/1	10:15 Am	Dun ;	
TWP.T	350 .	10-2	AN	CW	
TWPJ	400	10/3	0911	K	
mad 1	4500	1014	10:30	Lynn	
TWPS	400	10/4	1145 Pm	PIM	
PLANT OPERATORS NAME:		COMMENTS:	I.	· ·	
	9,650		we can the the transmission of the second		

1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

TIME PERIOD

CUETO

1428

	TIME PERIOD:		CUSTOMER	#:
BUSINESS NAME: TRUM ENVILO	- 414			
ADDRESS:	Norman and Anna and A	TRUC	CK CAPACITY:	
			L GALLONS DISCHARGED	• •
DRIVERS NAME:	PHONE:			
INI	DIVIDUAL LOAD INFO	RMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
Tups	200	916	3:00 pun	An
TWPJ	200	9/4		Run
Mad 1	4000	9/9	8:30	Lynn
516	2000	9/9	10:30	Lympo
TUPI	225	9-10	\$ 8:15	A.I
TWPS	200	3-10	2110 pm	Dur
TWRJ	500	9/11	0924	Ka,
TWPS	250	9/11	3:SSPm	Den
TWPS	200	gliz	3:55 Pm 2:00 pm	Dey
PLANT OPERATORS NAME:	7,775	COMMENTS:		
1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY				

TIME PERIOD:______CUSTOMER #:_____

		T	. ~ .
BUSINESS NAME:_	win	FO	VINO

TRUCK CAPACITY:_____

ADDRESS:

TOTAL GALLONS DISCHARGED:_____

DRIVERS NAME:______PHONE:_______PHONE:_____PHONE:______PHONE:______PHONE:_____PHONE:______PHONE:_____PHONE:______PHONE:______PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:______PHONE:______PHONE:______PHONE:______PHONE:______PHONE:______PHONE:______PHONE:______PHONE:______PHONE:______PHONE:______PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:_____PHONE:____PHONE:____PHONE:____PHONE:____PHONE:____PHONE:___PHONE:__PHONE:___PHONE:__PHONE:__PHONE:___PHONE:___PHONE:__PHONE:__PHONE:__PHONE:__PHONE:__PHONE:__PHONE:__PHONE:__PHONE:__PHONE:__PHONE:__PHONE:__PHONE:__PHONE:_PHON

INDIVIDUAL LOAD INFORMATION						
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS		
TWEI	225	9-13	An	Cu/		
TIRT	100	9-13	11.00AM	112		
TWPT	300	9-13	12130pm	CLL		
TWPT	300	9-13	1:25	CLC		
TIDI	600	9/16	0733	Ku		
TIPT	775	9/16	APM	AU		
- WI U	600	9107	@7:30Am	pin		
(U) PJ	6030	9/16	11 Am	400		
TIP	500	9/18	0940	KI		
PLANT OPERATORS NAME:		COMMENTS	······································			
	8,900					

TIME PERIOD:	
--------------	--

CUSTOMER #:_____

			TIME PERIOD:	
BUSINESS NAME:	Iwin	envino		
ADDRESS:				

TRUCK CAPACITY: TOTAL GALLONS DISCHARGED:_____

DRIVERS NAME:____

PHONE:____

IN	DIVIDUAL LOAD INFO	ORMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
Twpy	250	9/18	3:00 pm	Qu
TWFJ	350	9-19	An	Rel
FUPS	250	9-20	Soo Am	Ren
- INFO	400	9-20	AM	El
- WR	300	9/20	0906	Ki
mad 1	6000	9/20	1100	Lynn
TWP5	250	9/20	1:20 pm	Den
_ WFS	300	9/23	08/9	K
PLANT OPERATORS NAME:	500	9/24	0732	Kil
	8,600	COMMENTS:		
IST COPY - CITY OF STEAMBOAT CODINGS - AND	1			

TIME PERIOD:_____ CUSTOMER #:_____

BUSINESS NAME: THIN FAVINO ADDRESS:_

TRUCK CAPACITY:_____

TOTAL GALLONS DISCHARGED:_____

DRIVERS NAME:______PHONE:_____

INDIVID	UAL LOAD INFO	RMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
TWPIT	275	9-29	All	CW
ingd	4500	9-23	<i>Am</i>	Lynn
TWPT	150	9-24	11.0SAM	CLC
OT. IP.T	250	9-35	Au	CW
TUDY	260	9-25	2:48 pm	Dun
TI, DT	350	9/26	1015 AM	K
TWPT	150	9/2/2	10:07.4M	CLC
TUPT	450	9-26	PM	Ru
TUDS	250	9-26	1:58 pm	BM
PLANT OPERATORS NAME:	6635	COMMENTS:		

SEPTIC TANK F TO STEAMBOAT S	AULERS GA	LLONS I IONAL S	DISCHARGED EWAGE SYSTEM	1446
BUSINESS NAME: Thin Enviro	TIME PERIOD:	0/20	CUSTOME	R #:
ADDRESS:		TRU	CK CAPACITY:	
DRIVERS NAME:			AL GALLONS DISCHARGED):
INC	DIVIDUAL LOAD INF	ORMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
Mod 1	4500	10-8	1000	
TwpJ	500	10-9	2:55 pm	Qu
	1200	1.1		

10-10 10/11

10/11

19/11

10

2

130 pm

0734

licopm

2:00 Pm

1230

250

350

2500

300

250

11 101	725	10/1)
PLANT OPERATORS NAME:	800	10/13
	(9,845)	COMMENTS:

1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

mad

DI

Tiv PT

THRI

T

w

-

IA

K

4

CC.C

1

BUSINESS NAME: TEUIN EMM	TIME PERIOD:	CUSTOMER #:
ADDRESS:		RUCK CAPACITY:
DRIVERS NAME:	Т	OTAL GALLONS DISCHARGED:
	p	HONE:
NAME & CREEK	INDIVIDUAL LOAD INFORMATIC	DN

NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
Tup	600	10-14	9:00 Am	The
PJ	500	10/15	OTUS	fin
mad	3000	10-14	Ain	<u>In</u>
Twpz	250	10-15	11:00 Am	Bue;
	375	10.16	AM	Au
WAT	150	10-16	12:15pm	KD
- WPJ	602	10-17	PA	Rul
TUP	450	10/18	0747	K
PLANT OPERATORS NAME:	300	10/18	12:30 pm	Pin
	6,05)	COMMENTS:	, <u> </u>	
IST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY HALF FOR ANTI-				

IST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

.

TIME PERIOD:______CUSTOMER #:_____

3USINESS	NAME:

ADDRESS:

Their Envires TRUCK CAPACITY:_____

TOTAL GALLONS DISCHARGED:_____

DRIVERS NAME: ______PHONE: ______PHONE: ______PHONE: ______

	NDIVIDUAL LOAD INFO	ORMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
madl	Bosel	10-18	1400	Lynn
TWIN PZ	250	10-2	11:32	Gagemen
madl	1/000	10-21	14:10	have
TUPJ	300	10-22	10:15AM	CLL
TWPJ	300	10.27	11:15Am	CLL
TWPJ	300	1355p	10-27 ZiOSPK,	CUL,
TWPO	260	10-22	12.28 Pm	Gogenn
TWRJ	300	10-22	1530 Pm	CU
TVPS	450	10/23	12:25	K
PLANT OPERATORS NAME:	(9,150)	COMMENTS:		
T CODY OF OT AND OT SPRINCS AND CODY HALLERS CODY				

1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

1:

TIME PERIOD: 10-24

BUSINESS NAME:

Twin enviro	
-------------	--

CUSTOMER #:_____

1465

___TRUCK CAPACITY:_____

DRIVERS NAME:___

ADDRESS:_

____ TOTAL GALLONS DISCHARGED:______

_ PHONE:___

INDIVIDUAL LOAD INFORMATION					
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS	
/ WPJ	250	10-23-94	2:10	GUYAN	
TWPJ	300	10-24	8:05Am	al	
TOPJ	800	10-24	An	Ru	
TUR	350	10-25	2:15	Cugun	
TWRS	500	10/28	0800	lh	
TMPO	250	10/28	12:44	BD ,	
TWPJ	IDd	10/28	PM	Rh	
Biberro mad 1	3500	10/28	Pm	Lynn ,	
TWPJ	25	10/27	PM.	a	
PLANT OPERATORS NAME:	0.000	COMMENTS:	,		
	(MARAZO				
1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY	6,175))			

BUSINESS NAME: 100 K			CUSTOMER	#:	
ADDRESS:	TRUCK CAPACITY:				
DRIVERS NAME:		PHON	IE:		
	DUAL LOAD INFO				
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS	
TWPJ	600	11/8	3:20pm	DIL	
mad	3000	11-8	7.45	Lynn	
WFS	500	11/2	0910	Kr	
-					
PLANT OPERATORS NAME:	4,100)	COMMENTS:			

BUSINESS NAME: TWIN ENVILO	TIME PERIOD:	CUSTOMER #:	
ADDRESS:	TRUC	CK CAPACITY:	

TOTAL GALLONS DISCHARGED:_____

DRIVERS NAME:______PHONE:_____PHONE:_____

INDIVIDUAL LOAD INFORMATION					
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS	
TWPJ	250	11-4-24	2:17	G	
mod l	7500	11-5-24	12:15	4100	
TUPP	250	11-8-24	12:20	60	
TWPT	150	11/5	2:47	Alen	
TWRD	390	11/7	0735	Ka	
TUPS	400	1117	8:20	an	
TWPD	400	11/7	2:37	GP	
1.000	300	11/8	8:45	GIO	
TWBB	250	1118	2:10	64	
PLANT OPERATORS NAME:	9,800				
ART CORY CITY OF STEAMBOAT SPRINGS 2ND CORY HALLERS CORY		, <u>k</u>	and the second		

1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

and a second second

SEPTIC TANK HA TO STEAMBOAT SPR	ULERS GA	LLONS I ONAL S	DISCHARGED EWAGE SYSTEM	1482
BUSINESS NAME: TWIN ENVIRO P	IME PERIOD:	<u> 11 /20</u>	CUSTOMER	R#:
ADDRESS:		TRU	CK CAPACITY:	
		TOT/	AL GALLONS DISCHARGED):
	DUAL LOAD INF	(m.)		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
WRT	450	11-12	11:45	(ST)
Tups	500	11-13	1:25 pm	Dun
/WPF	250	11-13	1:30 m	a
- IWPT	250	11-14	1:10 PM	1500
TWPJ	250	11-14	2:15 pm	Dun
1407	200	1/-15	1:37 PM	150
TWPS	200	11-15	2:05 pm	Don
mod	3500	11-15	9.400	Lp
PLANT OPERATORS NAME:	2000	11-18	9145	40
	7,660	COMMENTS:		

SEPTIC TANK	HAULERS GALLONS	S DISCHARGED
TO STEAMBOAT	SPRINGS REGIONAL	SEWAGE SYSTEM

BUSINESS NAME: THIN ENVILO

TIME PERIOD: 11/2024

1483

TRUCK CAPACITY:__

ADDRESS:

TOTAL GALLONS DISCHARGED:___

____ CUSTOMER #:_

•

DRIVERS NAME:_

PHONE:

IN	DIVIDUAL LOAD INFO	ORMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
J Wr97	200	12-10	3:05 pm	60
TWPF	200	12-11	1:35pm	GO
mool I	3500	12-13	10:50	Lupp
mod 1	3000	12-16	12:30	4mm
TWO7	450	12-16	2:35 PM	GD
TWAY	FOD	12-16	3:05 PM	QM
TWPT	150	12.17	1+15 Pm.	Prail-
TUPT	250	12-17	1:30 pm	60.001
TWRJ	350	12/19	0840	Kr
PLANT OPERATORS NAME:	8,700	COMMENTS:		
ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY			and an entry of the same states and	

BUSINESS NAME: TWIN Enviro	TIME PERIOD:	AL SEWAGE SYSTEM	
ADDRESS:		TRUCK CAPACITY:	
DRIVERS NAME:		TOTAL OALLONG THE	
	INDIVIDUAL LOAD INFORMAT		
NAME & ADDRESS OF CUSTOMER TWPJ TWPJ PJTW DOd/ IWPJ TWP TWP TWP TWP TWP TWP TWP TWP	600 11/	25 9130 Am 26 2:20 M 26 11:20 AM 27 08/5 2 0913 7 Am	DRIVER NAME/INITIALS

HAULERS COPY

TIME PERI	OD:
-----------	-----

_____ CUSTOMER #:_____

1	TIME PERIOD:
BUSINESS NAME: Their Enliste	
ADDRESS:	

TRUCK CAPACITY:_____ TOTAL GALLONS DISCHARGED:_____

DRIVERS NAME:

PHONE:_____

INI	DIVIDUAL LOAD INFO	DRMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
mod 1	2000	12-2	1000	(1.72.52)
TWPF	300	12-2	11:50 AM	(age an
1 WPAP	500	12-2	1:40 pm	Cop Cop
	150	12-3	12: 65 pm	GP
			/	
			4 0 ⁻¹	
PLANT OPERATORS NAME:	(2057)	COMMENTS:		
PT CORV OT / OC OT	(2,950)			

20 12 TIME PERIOD:

_ CUSTOMER #:____

1495

BUSINESS NAME:_

ADDRESS:_

____ TRUCK CAPACITY:_

__ TOTAL GALLONS DISCHARGED:____

DRIVERS NAME:__

luin

ori un

PHONE:

INDIV	IDUAL LOAD INFO	ORMATION	The second second second	Carlos Carrotters &
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
TUPT	350	12-6	8:03 pm	(I)
modl	3300	12-6	9:13	hann
TUPJ	260	12-6	2:55 pm	Dire
#TWPJ	100	12-7	2:55pm	CLL
TWRS	400	12-9	11:30 Mm	OLL
Basin	1000	12-8.	9:00	Linn
TWPT	750	12-0	12:15 pm	GUGU
TWPP	1000	2-9	1:30 pm	619
TWPS	250	12-91	ZOOPIN	12 m
LANT OPERATORS NAME:	7,610	COMMENTS:		10-2

BUSINESS NAME: TWEET CONTO	TIME PERIOD:		CUSTOME	R #:
ADDRESS:				
		TRU	CK CAPACITY:	
DRIVERS NAME:		TOT/	AL GALLONS DISCHARGED):
		PHO	NE:	
INDIV	IDUAL LOAD INF	ORMATION		
NAME & ADDRESS OF CUSTOMER	GALLONS	DATE	TIME OF DISCHARGE	
TWPS	250	12/19	11:30 Am	
1 WPT	250	12-19	11:25 AM	In
medl	3000	12-20	Am	
Med 1 TUDA	2000	12-23		Lynn
1 Weg	750	12-23		Lynn
TWPS	250	1223		Din
IWPS	400	12/201	E907	PUL
12/10	300	12-24	ID'ED AM	K
TUPS		12 24	10:50 AM	GIU

500

7,700

12-26

COMMENTS:

1ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY

PLANT OPERATORS NAME:

1503

Dur

D m

1506

BUSINESS NAME: TWIN ON	TIME PERIOD:		CUSTOMER	R#:
ADDRESS.		TRUC	CK CAPACITY:	
DRIVERS NAME:			NL GALLONS DISCHARGED	:
NAME & ADDRESS OF CUSTOMER	DIVIDUAL LOAD INFO	ORMATION		
TUPJ	GALLONS	DATE	TIME OF DISCHARGE	DRIVER NAME/INITIALS
TUPT	250	12-27	1: 40pm	61
TWPS	250	12-27	1:42pm	pm
TWPJ	1200	12-30	N: 50 Am	h
mod mod	3000		Am	-ung
TWPJ	3000	12-30		h nn
PLANT OPERATORS NAME:	Se d	12/3/	124	K
-		COMMENTS:	Terre L	
ST COPY - CITY OF STEAMBOAT SPRINGS 2ND COPY - HAULERS COPY				

Appendix B Monthly Leachate Collection System Inspection Form

MONTHLY LEACHATE COLLECTION SYSTEM INSPECTION FORM

INSPECTED BY:	
David	reating
DATE COMPLETED:	
12/	13/24

MILNER LANDFILL

LEACHATE COLLECTION SYSTEM

INSPECTION FORM

INSPECTION ACTIVITY			
COMPONENT	DEFICIENCY	REPAIR	COMMENTS
SIDE SLOPES	6000	rone	
LEACHATE TRENCH DRAIN	6000	none	
LEACHATE HOLDING TANK	6000	rane	
MOD. 1 LEACHATE SUMP	6000	mone	
LEACHATE HOLDING POND	6000	none	
COMPOST EACHATE POND	6000	None	

INSPECTORS SIGNATURE

1902

13/24 DATE 12

MONTHLY LEACHATE COLLECTION SYSTEM INSPECTION FORM

INSPECTED BY: David Keating ATE COMPLETED: 11/15/24 DATE COMPLETED:

MILNER LANDFILL

LEACHATE COLLECTION SYSTEM

INSPECTION FORM

COMPONENT DEELCIENCY INSPECTION ACTIVITY			
	DEFICIENCY	REPAIR	
SIDE SLOPES	6000	NONQ	COMMENTS
LEACHATE TRENCH DRAIN	6000	none	
LEACHATE HOLDING TANK	6000	none	
MOD. 1 LEACHATE SUMP	6000	none.	
EACHATE IOLDING POND	6000	None	
OMPOST EACHATE POND	600 M	Nare	

INSPECTORS SIGNATURE Da La

DATE 11/15/24

MONTHLY LEACHATE COLLECTION SYSTEM INSPECTION FORM

INSPECTED BY: David Learing DATE COMPLETED: 1@/11/24

MILNER LANDFILL

LEACHATE COLLECTION SYSTEM

INSPECTION FORM

COMPONENT		INSPECTION ACTIVITY		
COMPONENT	DEFICIENCY	REPAIR		
SIDE SLOPES	Good	None	COMMENTS	
EACHATE RENCH DRAIN	6-001	none		
EACHATE IOLDING TANK	5000	nore		
10D. 1 LEACHATE SUMP	6000	none		
EACHATE OLDING POND	6000	NO ~ Com		
OMPOST EACHATE POND	6000	ran C		

INSPECTORS SIGNATURE

DATE 10/11/24

MONTHLY LEACHATE COLLECTION SYSTEM INSPECTION FORM

INSPECTED BY: Dakin kenting DATE COMPLETED: 9/30/21

MILNER LANDFILL

LEACHATE COLLECTION SYSTEM

INSPECTION FORM

		INSPECTION ACTIVITY						
COMPONENT	DEFICIENCY	REPAIR	COMMENTS					
SIDE SLOPES	None	NA	COMMENTS					
LEACHATE TRENCH DRAIN	None	ar / B						
LEACHATE HOLDING TANK	None	on A						
MOD. 1 LEACHATE SUMP	None	~/A						
LEACHATE HOLDING POND	Nonl	NIA						
COMPOST EACHATE POND	mone	NJA						

INSPECTORS SIGNATURE

23/ 50

DATE 9/30/24

MONTHLY LEACHATE COLLECTION SYSTEM INSPECTION FORM

INSPECTED BY: DAVED	kease-b
DATE COMPLETED: 8/21/24	SAR H

MILNER LANDFILL

LEACHATE COLLECTION SYSTEM

INSPECTION FORM

COMPONENT	DEFICIENCY	INSPECTION ACTIVITY	SPECTION ACTIVITY		
SIDE SLOPES	rane	REPAIR	COMMENTS		
LEACHATE	rone	NA			
TRENCH DRAIN		NA			
LEACHATE HOLDING TANK	nare	~/A			
MOD. 1 LEACHATE SUMP	None	N/b			
EACHATE IOLDING POND	None	N/14			
OMPOST EACHATE POND	rere	~/14			

INSPECTORS SIGNATURE

DATE SIJIAN

MONTHLY LEACHATE COLLECTION SYSTEM INSPECTION FORM

INSPECTED BY:	Daven	kenn-b-	
DATE COMPLETE			
	7/24	124	

MILNER LANDFILL

LEACHATE COLLECTION SYSTEM

INSPECTION FORM

COMPONENT		INSPECTION ACTIVITY	
	DEFICIENCY	REPAIR	
SIDE SLOPES	nane	NA	COMMENTS
EACHATE	rore	n/p	
LEACHATE HOLDING TANK	nent	~1/A	
MOD. 1 LEACHATE SUMP	nore	NA	
EACHATE IOLDING POND	None	~ / pa	
OMPOST EACHATE POND	Asta the Case	~/p	

INSPECTORS SIGNATURE

··· •·· · • ·

Appendix C Weekly Leachate Tank Inspection Form

INSPECTED BY: David Keller DATE COMPLETED: -

MILNER LANDFILL

LEACHATE TANK INSPECTION FORM

			TANK	INSPECTION	
DATE	TANK LEVEL ^{1,2,3} (FT)	BERM FREEBOARD (FT)	DEFICIENCY	REPAIR	COMMENTS
7//	714"	J' 9"	Nore	Nearle	
718	7' 1'' 7' 8''	3'10"	nado rola.	none	
7/15	8'2" 3'6"	3'10"	Nort	ASCO. AS Com.	
7/11	51911	3'10"	na-ê	Nort	
7/29	7'3" 6'6"	3'10''	Nran C	Noto no Co	
NSPECTO	RS SIGNATUF	RE	1 Leener	DATE 7/29/24	

Notes: 1.) There are two compartments in the tank. Both compartments must be measured at least weekly.

2.) The "Tank Level" represents a freeboard measurement and consists of measuring from the leachate surface to the top of the tank.

3.) Minimum tank freeboard is 2 feet.

INSPECTED BY: David Keating DATE COMPLETED: 8/2024 INSPECTED BY:

MILNER LANDFILL

LEACHATE TANK INSPECTION FORM

	TANK		TANK I	NSPECTION	
DATE	TANK LEVEL ^{1,2,3} (FT)	BERM FREEBOARD (FT)	DEFICIENCY	REPAIR	COMMENTS
8/5/irl	B'2" Day	Dozy	nore	none	COMMENTS
5/12	6'2" 7'3"	Drey	None	none	
3/19	5'10" 4'3"	3'	None	rore	
8/23	7'8" 7'10"	3'4"	None	none	
5/27	5' 7'	3'7"	Nore	no-e	
ISPECTOR	RS SIGNATUR	E Dal	La DA	TE <u>8/27/24</u>	

Notes: 1.) There are two compartments in the tank. Both compartments must be measured at least weekly.

2.) The "Tank Level" represents a freeboard measurement and consists of measuring from the leachate surface to the top of the tank.

INSPECTED BY: David keating	
DATE COMPLETED: 9/30/24	MILNER LANDFILL
4/30/24	LEACHATE TANK INSPECTION FORM

b	TANK	BERM	TAN	INSPECTION	
DATE	LEVEL ^{1,2,3} (FT)	FREEBOARD (FT)	DEFICIENCY	REPAIR	
9/3	5'11"	3'7"	Nore	NA	COMMENTS
	2'1"				
19	/ d /)	3' 8'		NIA	
	510				
1/10 1	7' 4'' 7' ,	DRY	None	2/14	
				of at	
1/23	5 10"	00	no-e	Np	
a 100	6 8				
1/30	71 8 "	0-2/	Nore	Np	
é				6"	
SPECTOR	S SIGNATUR	E Jean	free man		
		· · · · · · · · · · · · · · · · · · ·		DATE <u>9/30/14</u>	

A

- Notes: 1.) There are two compartments in the tank. Both compartments must be measured at least weekly. 2.) The "Tank Level" represents a freeboard measurement and consists of measuring from the leachate surface to the top of the tank. 3.) Minimum tank freeboard is 2 feet.

	MPLETED: 2	DC * 63 e N	+0,74	MILNER LA	
				LEACHATE TANK INS	PECTION FORM
	TANK EVEL ^{1,2,3}	BERM	TANK	INSPECTION	
18 6	(FT)	FREEBOARD	DEFICIENCY	REPAIR	COMMENTS
° 6	" " "			nore	
111 =	"10" "7"	Dry	None	rone	
187	1911=	3' 7''	Nare	Ara - Came	
247	5"3	'5"	Nore	Nore	
287	3"3	5"	None	rone	

Notes: 1.) There are two compartments in the tank. Both compartments must be measured at least weekly. 2.) The "Tank Level" represents a freeboard measurement and consists of measuring from the leachate surface to the top of the tank. 3.) Minimum tank freeboard is 2 feet.

INSPECTED BY: DAVID KOUTING DATE COMPLETED: 11/2024

MILNER LANDFILL

LEACHATE TANK INSPECTION FORM

	TANK	BERM	TANK	INSPECTION	
DATE	LEVEL ^{1,2,3} (FT)	FREEBOARD	DEFICIENCY	REPAIR	
11/1	7'2"	3'4"	None	Nore	COMMENTS
		3'1"		None	
11/15	7'''' 6''''	J'10"	Nort	NORC	
1/22	7'6'8"	1'9"	ne a er C	Nane	
11/25	Frezen	L'€"	None	Nane	
				for the struct Reserve	

INSPECTORS SIGNATURE

DATE 11/25/24

Notes: 1.) There are two compartments in the tank. Both compartments must be measured at least weekly.

2.) The "Tank Level" represents a freeboard measurement and consists of measuring from the leachate surface to the top of the tank.

INSPECTED BY: David Keating DATE COMPLETED: 12/2024		4	MILNER LA	NDFILL	
			/	LEACHATE TANK INS	
	TANK LEVEL ^{1,2,3}	BERM	TAN	(INSPECTION	
	<u>(F</u> T)	FREEBOARD (FT) 2'6''	DEFICIENCY	REPAIR	COMMENTS
and the second	1 4 - 261	26	the construction of the co	Nore	
13	Frozen	2'5"	Autor so that the	-	
				NCA-C	
117	Frazen	2' 4 "	Nono		
				nane	
1201	Fraze	2'6"	no ne	None	
4-7 1	1020- 0	2'3''	~~~e	nare	

Notes: 1.) There are two compartments in the tank. Both compartments must be measured at least weekly. 2.) The "Tank Level" represents a freeboard measurement and consists of measuring from the leachate surface to the top of the tank. 3.) Minimum tank freeboard is 2 feet.

Appendix D Laboratory Analytical Results

Analytical Report

November 12, 2024

Report to: David Keating Twin Landfill Corporation 40650 CO Rd 205 Steamboat Springs, CO 80487

cc: Rebecca Lindeman

Bill to: Jen Oliver Twin Landfill Corporation 20650 CR 205 Steamboat Springs, CO 80487

Project ID: ACZ Project ID: L91136

David Keating:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 24, 2024. This project has been assigned to ACZ's project number, L91136. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L91136. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after December 12, 2024. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

- gibl)

Sue Webber has reviewed and approved this report.

November 12, 2024

Project ID:

ACZ Project ID: L91136

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 3 groundwater samples from Twin Landfill Corporation on October 24, 2024. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L91136. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

Sample Analysis

These samples were analyzed for inorganic, organic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The following required further explanation not provided by the Extended Qualifier Report:

1. The below is from WG600586, Qualifier: N1A, Applies to: L91136-01/THALLIUM, L91136-02/LEAD L91136-02/THALLIUM, L91136-02/ZINC - Interference check sample (ICS-AB) had recovery above method limits. Associated samples were non-detect.

2. The below is from WG600586, Qualifier: N1, Applies to: L91136-01 and -02/CADMIUM - Cd detected in interference check sample (ICS-A). Cd present as a trace impurity in vendor-supplied ICS solution. Cd ICS-A values up to 0.00085mg/L are within method limits. Pass data

Project ID: Sample ID: MOD 1

Inorganic Analytical Results

ACZ Sample ID:	L91136-01
Date Sampled:	10/24/24 09:55
Date Received:	10/24/24
Sample Matrix:	Groundwater

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Lab Filtration (0.45um) & Acidification	EPA 200.7/200.8/3005A Filter								10/31/24 17:10) aps
Total Hot Plate Digestion	EPA 3010A								10/31/24 12:45	aps
Total Hot Plate Digestion	EPA 3010A				*				10/28/24 21:02	e aeh
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Antimony, total	EPA 6020B	2	<0.0008	U		mg/L	0.0008	0.004	11/04/24 14:05	aps
Arsenic, total	EPA 6020B	5	0.00279	В		mg/L	0.001	0.005	11/06/24 18:43	aps a
Barium, total	EPA 6010D	5	0.992			mg/L	0.045	0.175	10/30/24 1:35	msp
Beryllium, total	EPA 6020B	2	<0.0002	U		mg/L	0.0002	0.0005	11/04/24 14:05	i aps
Cadmium, total	EPA 6020B	2	<0.0001	U	*	mg/L	0.0001	0.0005	11/04/24 14:05	i aps
Calcium, dissolved	EPA 6010D	2	231			mg/L	0.2	1	11/08/24 17:49) msp
Chromium, total	EPA 6020B	2	0.00566			mg/L	0.001	0.004	11/04/24 14:05	i aps
Cobalt, total	EPA 6020B	5	0.00425			mg/L	0.00025	0.00125	11/06/24 18:43	aps
Copper, total	EPA 6010D	5	<0.05	U		mg/L	0.05	0.25	10/30/24 1:35	msp
Lead, total	EPA 6020B	5	<0.0005	U		mg/L	0.0005	0.0025	11/06/24 18:43	aps
Magnesium, dissolved	EPA 6010D	2	200			mg/L	0.4	2	11/08/24 17:49) msp
Nickel, total	EPA 6010D	5	0.0410	В		mg/L	0.04	0.2	10/30/24 1:35	msp
Potassium, dissolved	EPA 6010D	2	73.5		*	mg/L	1	2	11/08/24 17:49) msp
Selenium, total	EPA 6020B	2	<0.0002	U	*	mg/L	0.0002	0.0005	11/04/24 14:05	i aps
Silver, total	EPA 6020B	2	<0.0002	U	*	mg/L	0.0002	0.001	11/04/24 14:05	i aps
Sodium, dissolved	EPA 6010D	2	525		*	mg/L	0.4	2	11/08/24 17:49	msp
Thallium, total	EPA 6020B	2	<0.0002	U	*	mg/L	0.0002	0.001	11/04/24 14:05	aps
Vanadium, total	EPA 6010D	5	<0.05	U		mg/L	0.05	0.125	10/30/24 1:35	msp
Zinc, total	EPA 6020B	5	0.0318	В		mg/L	0.03	0.075	11/06/24 18:43	aps

Project ID: Sample ID: MOD 1

Inorganic Analytical Results

ACZ Sample ID: **L91136-01** Date Sampled: 10/24/24 09:55 Date Received: 10/24/24 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM 2320 B-2011									
Bicarbonate as CaCO3		1	1520			mg/L	2	20	10/25/24 0:00	asn
Carbonate as CaCO3	1	1	<2	U		mg/L	2	20	10/25/24 0:00	asn
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/25/24 0:00	asn
Total Alkalinity		1	1520			mg/L	2	20	10/25/24 0:00	asn
Carbon, total organic (TOC)	SM 5310 B-2011/2014	1	114			mg/L	1	5	10/29/24 13:32	ems
Cation-Anion Balance	Calculation									
Cation-Anion Balance	9		-10.9			%			11/12/24 0:00	calc
Sum of Anions			66			meq/L			11/12/24 0:00	calc
Sum of Cations			53.0			meq/L			11/12/24 0:00	calc
Chloride	SM 4500-CI E-2011	50	1210			mg/L	50	100	11/05/24 11:49	jqr
Conductivity @25C	SM 2510 B-2011	1	5870			umhos/cm	1	10	10/25/24 21:06	asn
Lab Filtration (0.45um filter)	SOPWC050	1							11/04/24 10:55	cm/bsc
Nitrate as N	Calculation (NO3NO2-NO2)		0.039	В		mg/L	0.02	0.1	11/12/24 0:00	calc
Nitrate/Nitrite as N	EPA 353.2	1	0.039	В	*	mg/L	0.02	0.1	10/25/24 0:11	pjb
Nitrite as N	EPA 353.2	1	<0.01	U	*	mg/L	0.01	0.05	10/25/24 0:11	pjb
pH (lab)	SM 4500-H+ B-2011									
рН		1	7.4	Н		units	0.1	0.1	10/25/24 0:00	asn
pH measured at		1	22.2			С	0.1	0.1	10/25/24 0:00	asn
Sulfate	ASTM D516-07/-11/-16	5	59.1		*	mg/L	5	25	11/05/24 14:16	jqr

Project ID: Sample ID: TANK 5/6

Inorganic Analytical Results

ACZ Sample ID:	L91136-02
Date Sampled:	10/24/24 09:30
Date Received:	10/24/24
Sample Matrix:	Groundwater

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Lab Filtration (0.45um) & Acidification	EPA 200.7/200.8/3005A Filter								10/31/24 17:10	aps
Total Hot Plate Digestion	EPA 3010A								10/31/24 12:45	aps
Total Hot Plate Digestion	EPA 3010A				*				10/28/24 21:19	aeh
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Antimony, total	EPA 6020B	2	<0.0008	U		mg/L	0.0008	0.004	11/04/24 14:07	aps
Arsenic, total	EPA 6020B	5	0.00223	В		mg/L	0.001	0.005	11/06/24 18:45	aps
Barium, total	EPA 6010D	5	0.312			mg/L	0.045	0.175	10/30/24 1:38	msp
Beryllium, total	EPA 6020B	2	<0.0002	U		mg/L	0.0002	0.0005	11/04/24 14:07	aps
Cadmium, total	EPA 6020B	2	<0.0001	U	*	mg/L	0.0001	0.0005	11/04/24 14:07	aps
Calcium, dissolved	EPA 6010D	2	183			mg/L	0.2	1	11/08/24 17:53	msp
Chromium, total	EPA 6020B	2	0.00270	В		mg/L	0.001	0.004	11/04/24 14:07	aps
Cobalt, total	EPA 6020B	5	0.00486			mg/L	0.00025	0.00125	11/06/24 18:45	aps
Copper, total	EPA 6010D	5	<0.05	U		mg/L	0.05	0.25	10/30/24 1:38	msp
Lead, total	EPA 6020B	2	<0.0002	U	*	mg/L	0.0002	0.001	11/04/24 14:07	aps
Magnesium, dissolved	EPA 6010D	2	109			mg/L	0.4	2	11/08/24 17:53	msp
Nickel, total	EPA 6010D	5	<0.04	U		mg/L	0.04	0.2	10/30/24 1:38	msp
Potassium, dissolved	EPA 6010D	2	69.1		*	mg/L	1	2	11/08/24 17:53	msp
Selenium, total	EPA 6020B	2	<0.0002	U	*	mg/L	0.0002	0.0005	11/04/24 14:07	aps
Silver, total	EPA 6020B	2	<0.0002	U	*	mg/L	0.0002	0.001	11/04/24 14:07	aps
Sodium, dissolved	EPA 6010D	2	288		*	mg/L	0.4	2	11/08/24 17:53	msp
Thallium, total	EPA 6020B	2	<0.0002	U	*	mg/L	0.0002	0.001	11/04/24 14:07	aps
Vanadium, total	EPA 6010D	5	<0.05	U		mg/L	0.05	0.125	10/30/24 1:38	msp
Zinc, total	EPA 6020B	2	<0.012	U	*	mg/L	0.012	0.03	11/04/24 14:07	aps

Project ID: Sample ID: TANK 5/6

Inorganic Analytical Results

ACZ Sample ID: **L91136-02** Date Sampled: 10/24/24 09:30 Date Received: 10/24/24 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM 2320 B-2011									
Bicarbonate as		1	1560			mg/L	2	20	10/25/24 0:00	asn
CaCO3										
Carbonate as CaCO3		1	<2	U		mg/L	2	20	10/25/24 0:00	asn
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/25/24 0:00	asn
Total Alkalinity		1	1560			mg/L	2	20	10/25/24 0:00	asn
Carbon, total organic (TOC)	SM 5310 B-2011/2014	1	74.8			mg/L	1	5	10/29/24 13:49	ems
Cation-Anion Balance	Calculation									
Cation-Anion Balance	•		-10.8			%			11/12/24 0:00	calc
Sum of Anions			41			meq/L			11/12/24 0:00	calc
Sum of Cations			33			meq/L			11/12/24 0:00	calc
Chloride	SM 4500-CI E-2011	25	347			mg/L	25	50	11/05/24 11:50	jqr
Conductivity @25C	SM 2510 B-2011	1	3640			umhos/cm	1	10	10/25/24 21:16	asn
Lab Filtration (0.45um filter)	SOPWC050	1							11/04/24 10:58	cm/bsc
Nitrate as N	Calculation (NO3NO2-NO2)		0.176			mg/L	0.02	0.1	11/12/24 0:00	calc
Nitrate/Nitrite as N	EPA 353.2	1	0.218		*	mg/L	0.02	0.1	10/25/24 0:12	pjb
Nitrite as N	EPA 353.2	1	0.042	В	*	mg/L	0.01	0.05	10/25/24 0:12	pjb
pH (lab)	SM 4500-H+ B-2011									
рН		1	7.9	н		units	0.1	0.1	10/25/24 0:00	asn
pH measured at		1	22.4			С	0.1	0.1	10/25/24 0:00	asn
Sulfate	ASTM D516-07/-11/-16	1	<1	U	*	mg/L	1	5	11/05/24 14:08	jqr

Inorganic Reference

Batch	r Explanations A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest Upper limit for RPD, in %.		
Limit Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL		alogo omittad ar a	gual to the DOL (and commont #5)
NIDL	Method Detection Limit. Same as Minimum Reporting Limit ur Allows for instrument and annual fluctuations.	liess officied of e	qual to the FQL (see comment #5).
PCN/SCN		ufacturer's certific	ate of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA term "		
	True Value of the Control Sample or the amount added to the		
Rec	Recovered amount of the true value or spike added, in % (exc	•	/Ka)
RPD	Relative Percent Difference, calculation used for Duplicate QC		5,
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)	51	
Sample	Value of the Sample of interest		
Sample Ty	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
AS ASD	Analytical Spike (Post Digestion) Analytical Spike (Post Digestion) Duplicate	LESWD	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
	<u>,</u> , , , , , , , , , , , , , , , , , ,		
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution
	· · ·	SDL	Serial Dilution
Sample Ty	vpe Explanations		
Sample Ty Blanks	ype Explanations Verifies that there is no or minimal co	ontamination in the	e prep method or calibration procedure.
Sample Ty Blanks Control Sa	vpe Explanations Verifies that there is no or minimal co mples Verifies the accuracy of the method,	ontamination in the	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates	Vpe Explanations Verifies that there is no or minimal co umples Verifies the accuracy of the method, Verifies the precision of the instrume	ontamination in the including the prep nt and/or method	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates	vpe Explanations Verifies that there is no or minimal co mples Verifies the accuracy of the method,	ontamination in the including the prep nt and/or method ces, if any.	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	Verifies that there is no or minimal co Verifies the accuracy of the method, Verifies the precision of the instrume Determines sample matrix interferen Verifies the validity of the calibration.	ontamination in the including the prep nt and/or method ces, if any.	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	vpe Explanations Verifies that there is no or minimal co Verifies the accuracy of the method, Verifies the precision of the instrume Determines sample matrix interferen Verifies the validity of the calibration.	ontamination in the including the prep nt and/or method ces, if any.	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B	ype Explanations Verifies that there is no or minimal completed by the securacy of the method, where the securacy of the method, where the securacy of the instrume of the method is the securacy of the method, where the securacy of the securacy of the method, where the securacy of t	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa	e prep method or calibration procedure. o procedure. ted value is an estimated quantity.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H	ype Explanations ymples Verifies that there is no or minimal convertinges the accuracy of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method, verifies the validity of the calibration. state Determines sample matrix interferent verifies the validity of the calibration. state Matrix Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an analysis exceeded method hold time.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold t	e prep method or calibration procedure. o procedure. ted value is an estimated quantity.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L	ype Explanations wmples Verifies that there is no or minimal converting the accuracy of the method, verifies the precision of the instrume determines sample matrix interferent verifies the validity of the calibration. state Determines sample matrix interferent verifies the validity of the calibration. state Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined negotiation.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold f gative threshold.	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H	ype Explanations ymples Verifies that there is no or minimal convertinges the accuracy of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method, verifies the validity of the calibration. state Determines sample matrix interferent verifies the validity of the calibration. state Matrix Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an analysis exceeded method hold time.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the associa	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	ype Explanations umples Verifies that there is no or minimal convertinges trifles Verifies the accuracy of the method, verifies the precision of the instrume trifled Matrix Determines sample matrix interferent Verifies the validity of the calibration. Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the The sample quantitation limit or the	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the associa	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	ype Explanations Verifies that there is no or minimal convertinges temples Verifies the accuracy of the method, Verifies the precision of the instrume rtified Matrix Determines sample matrix interferent verifies the validity of the calibration. Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the second s	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the associate the sample detect	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. pociated value. tion limit.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	ype Explanations Verifies that there is no or minimal comples umples Verifies the accuracy of the method, Verifies the precision of the instrume trified Matrix Determines sample matrix interferent verifies the validity of the calibration. Second the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the material was analyzed for. ences EPA 600/4-83-020. Methods for Chemical Analysis of Water and the sample calibration of the sample calibration calibration of the sample calibration calibration of the sample calibration calibraticalibraticalibration calibration calibraticalibration ca	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold f gative threshold. e level of the asso the sample detect and Wastes, Marc	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bociated value. tion limit.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Refere (1) (2)	ype Explanations Verifies that there is no or minimal comples umples Verifies the accuracy of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method. trified Matrix Determines sample matrix interferent verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgan	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the associa the sample detect and Wastes, Marc nic Substances in	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3)	ype Explanations Verifies that there is no or minimal converting the precision of the method, werifies the precision of the instrume of the method. amples Verifies the precision of the instrume of the method. attribute Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Analyte concentration detected at a value between MDL and Fermination of the precision of the pre	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the associa the sample detect and Wastes, Marc nic Substances in	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Refere (1) (2) (3) (4)	ype Explanations Verifies that there is no or minimal comples umples Verifies the accuracy of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method. trified Matrix Determines sample matrix interferent verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgan	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the association the sample detect and Wastes, Marca nic Substances in in Environmental	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Refere (1) (2) (3) (4) (5)	ype Explanations Verifies that there is no or minimal convertinges temples Verifies the accuracy of the method, Verifies the precision of the instrume rtified Matrix Determines sample matrix interferent verifies the validity of the calibration. Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/A-83-020. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the association the sample detect and Wastes, Marca nic Substances in in Environmental	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Refere (1) (2) (3) (4) (5)	ype Explanations Verifies that there is no or minimal converting the second of the method, werifies the accuracy of the method, werifies the precision of the instrume of the Matrix https://werifies.com/sample Determines sample matrix interferent of the calibration. trified Matrix Determines sample matrix interferent of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nego. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/4-83-020. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold f gative threshold. e level of the associa the sample detect and Wastes, Marc nic Substances in in Environmental ater.	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1)	ype Explanations Verifies that there is no or minimal comples umples Verifies the accuracy of the method, Verifies the precision of the instrume the precision of the calibration. state Determines sample matrix interferent Verifies the validity of the calibration. state Determines sample matrix interferent Verifies the validity of the calibration. state Analyte concentration detected at a value between MDL and Fe Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nego. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-83-020. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the association the sample detect and Wastes, Marco in Environmental ater.	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2)	ype Explanations Verifies that there is no or minimal converting the precision of the method, werifies the precision of the instrume of the Matrix petermines sample matrix interferent verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and Fe Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold is pative threshold. e level of the associative threshold. the sample detect and Wastes, Marca in Environmental ater.	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2) (3)	ype Explanations umples Verifies that there is no or minimal convertinges rtified Matrix Verifies the precision of the instrume petermines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined negotime the material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-93-100. EPA 600/R-94-111. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for the Datermination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold is gative threshold. e level of the association the sample detect and Wastes, Marca ic Substances in in Environmental ater.	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2)	vpe Explanations Verifies that there is no or minimal converting the accuracy of the method, verifies the accuracy of the method, verifies the precision of the instrume Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-93-100. EPA 600/R-93-100. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for the Examination of Water and Wasteward QC results calculated from raw data. QC results calculated from raw data. Results may vary slight	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold is gative threshold. e level of the association the sample detect and Wastes, Marca ic Substances in in Environmental ater.	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2) (3)	ype Explanations Verifies that there is no or minimal converting the precision of the method, werifies the precision of the instrume of the Matrix Determines sample matrix interferent verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-93-100. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	PQL. The associant in the including the preprint and/or method ces, if any. PQL. The associant immediate hold the pative threshold. The sample detection is a sample detection of the sample detection is constances in a sample detection of the sample detection is constant. The patient is a sample detection of the sampl	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis. ertification qualifier

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

Inorganic QC Summary

TWIN

ACZ Project ID: L91136

Alkalinity as CaC	03		SM2320	B - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600071													
WG600071PBW1	PBW	10/25/24 16:24				2.2	mg/L		-20	20			
WG600071LCSW3	LCSW	10/25/24 16:37	WC241015-1	820.0001		811.3	mg/L	99	90	110			
WG600071LCSW6	LCSW	10/25/24 18:47	WC241015-1	820.0001		785.3	mg/L	96	90	110			
WG600071PBW2	PBW	10/25/24 18:57				5.6	mg/L		-20	20			
L91146-02DUP	DUP	10/25/24 21:45			415	408	mg/L				2	20	
WG600071LCSW9	LCSW	10/25/24 21:58	WC241015-1	820.0001		801.5	mg/L	98	90	110			
WG600071PBW3	PBW	10/25/24 22:08				5.7	mg/L		-20	20			
WG600071LCSW12	LCSW	10/25/24 22:34	WC241015-1	820.0001		807.6	mg/L	98	90	110			
Antimony, total			EPA 602	:0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600586													
WG600586ICV	ICV	11/04/24 13:19	MS241016-2	.02		.01948	mg/L	97	90	110			
WG600586ICB	ICB	11/04/24 13:20				U	mg/L		-0.0012	0.0012			
WG600424PBW	PBW	11/04/24 13:31				U	mg/L		-0.0012	0.0012			
WG600424LCSW	LCSW	11/04/24 13:33	MS241008-3	.01		.01021	mg/L	102	80	120			
L91151-04MS	MS	11/04/24 14:20	MS241008-3	.01	U	.01086	mg/L	109	75	125			
L91151-04MSD	MSD	11/04/24 14:22	MS241008-3	.01	U	.01087	mg/L	109	75	125	0	20	
			EPA 602										
Arsenic, total	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Unite	Rec%	Lower	Upper	RPD	Limit	Qual
	туре	Analyzeu	r on/son	QU	Gample	Tound	Units	Nec /	Lower	opper		Linint	Quai
WG600793													
WG600793ICV	ICV	11/06/24 17:44	MS241016-2	.05		.05159	mg/L	103	90	110			
WG600793ICB	ICB	11/06/24 17:45				U	mg/L		-0.0006	0.0006			
WG600037PBW	PBW	11/06/24 17:56				U	mg/L		-0.0006	0.0006			
WG600037LCSW	LCSW	11/06/24 17:58	MS241008-3	.0501		.05403	mg/L	108	80	120			
WG600424PBW	PBW	11/06/24 18:14				U	mg/L		-0.0006	0.0006			
WG600424LCSW	LCSW	11/06/24 18:16	MS241008-3	.0501		.05354	mg/L	107	80	120			
L91151-04MS	MS	11/06/24 18:48	MS241008-3	.0501	.00108	.06126	mg/L	120	75	125			
L91151-04MSD	MSD	11/06/24 18:50	MS241008-3	.0501	.00108	.06045	mg/L	119	75	125	1	20	
WG600585PBW	PBW	11/06/24 18:56				U	mg/L		-0.0006	0.0006			
WG600585LCSW	LCSW	11/06/24 18:57	MS241008-3	.0501		.0535	mg/L	107	80	120			
Barium, total			EPA 601	0D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600294													
				0		1.947	mg/L	97	90	110			
WG600294ICV	ICV	10/29/24 23:26	II241022-1	2		1.017							
WG600294ICV WG600294ICB	ICV ICB	10/29/24 23:26 10/29/24 23:29	II241022-1	2		U	mg/L		-0.027	0.027			
			II241022-1	2			-		-0.027 -0.027	0.027 0.027			
WG600294ICB	ICB	10/29/24 23:29 10/29/24 23:53	II241022-1 II241018-2	.5025		U	mg/L	95		0.027			
WG600294ICB WG600160PBW	ICB PBW	10/29/24 23:29			U	U U	mg/L mg/L	95 88	-0.027				

Inorganic QC Summary

TWIN

ACZ Project ID: L91136

Beryllium, total			EPA 602)B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600586													
WG600586ICV	ICV	11/04/24 13:19	MS241016-2	.05		.047241	mg/L	94	90	110			
WG600586ICB	ICB	11/04/24 13:20				U	mg/L		-0.00024	0.00024			
WG600424PBW	PBW	11/04/24 13:31				U	mg/L		-0.00024	0.00024			
WG600424LCSW	LCSW	11/04/24 13:33	MS241008-3	.0501		.047274	mg/L	94	80	120			
L91151-04MS	MS	11/04/24 14:20	MS241008-3	.0501	U	.046247	mg/L	92	75	125			
L91151-04MSD	MSD	11/04/24 14:22	MS241008-3	.0501	U	.046442	mg/L	93	75	125	0	20	
Cadmium, total			EPA 602)B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600586													
WG600586ICV	ICV	11/04/24 13:19	MS241016-2	.05		.047154	mg/L	94	90	110			
WG600586ICB	ICB	11/04/24 13:20				U	mg/L		-0.00015	0.00015			
WG600424PBW	PBW	11/04/24 13:31				U	mg/L		-0.00015	0.00015			
WG600424LCSW	LCSW	11/04/24 13:33	MS241008-3	.05005		.048182	mg/L	96	80	120			
L91151-04MS	MS	11/04/24 14:20	MS241008-3	.05005	U	.047928	mg/L	96	75	125			
L91151-04MSD	MSD	11/04/24 14:22	MS241008-3	.05005	U	.048234	mg/L	96	75	125	1	20	
Calcium, dissolv	/ed		EPA 601	D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600869													
WG600869ICV	ICV	11/08/24 16:11	II241030-7	100		97.98	mg/L	98	90	110			
WG600869ICB	ICB	11/08/24 16:14				U	mg/L		-0.3	0.3			
L90906-01AS	AS	11/08/24 16:51	II241101-3	67.963	103	169.8	mg/L	98	75	125			
L90906-01ASD	ASD	11/08/24 16:55	II241101-3	67.963	103	167.3	mg/L	95	75	125	1	20	
Carbon, total org	ganic (T	C)	SM 5310	B-2011/20)14								
	ganic (To Type	DC) Analyzed	SM 5310 PCN/SCN	B-2011/20 QC)14 Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
		-				Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
ACZ ID WG596271	Туре	-				Found	Units mg/L	Rec%	Lower 90	Upper 110	RPD	Limit	Qual
Carbon, total org ACZ ID WG596271 WG596271ICV WG596271ICB		Analyzed	PCN/SCN	QC							RPD	Limit	Qual
ACZ ID WG596271 WG596271ICV	Type	Analyzed 08/30/24 3:29	PCN/SCN	QC		102.6	mg/L		90	110	RPD	Limit	Qual
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152	Type ICV ICB	Analyzed 08/30/24 3:29 08/30/24 3:44	PCN/SCN WI240821-3	QC 100		102.6 U	mg/L mg/L	103	90 -2.5	110 2.5	RPD	Limit	Qual
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV	Type ICV ICB ICV	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00	PCN/SCN	QC		102.6 U 98.9	mg/L mg/L mg/L		90 -2.5 90	110 2.5 110	RPD	Limit	Qual
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB	Type ICV ICB ICV ICB	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13	PCN/SCN WI240821-3	QC 100 100		102.6 U 98.9 U	mg/L mg/L mg/L mg/L	103 99	90 -2.5 90 -2.5	110 2.5 110 2.5	RPD	Limit	Qual
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB WG600152LFB	Type ICV ICB ICV ICB LFB	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13 10/29/24 11:43	PCN/SCN WI240821-3 WI241001-2	QC 100 100 50	Sample	102.6 U 98.9 U 49.5	mg/L mg/L mg/L	103 99 99	90 -2.5 90 -2.5 85	110 2.5 110 2.5 115	RPD	Limit	Qual
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB	Type ICV ICB ICV ICB	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13	PCN/SCN WI240821-3 WI241001-2 WI240821-4	QC 100 100		102.6 U 98.9 U	mg/L mg/L mg/L mg/L mg/L	103 99	90 -2.5 90 -2.5	110 2.5 110 2.5	RPD 1	Limit 15	Qual
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB WG600152LFB L91114-02AS	Type ICV ICB ICV ICB LFB AS	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13 10/29/24 11:43 10/29/24 12:58	PCN/SCN WI240821-3 WI241001-2 WI240821-4 WI240821-4 WI240821-4	QC 100 100 50 50	Sample 2.9 2.9	102.6 U 98.9 U 49.5 51.4	mg/L mg/L mg/L mg/L mg/L	103 99 99 99	90 -2.5 90 -2.5 85 85	110 2.5 110 2.5 115 115			Qual
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB WG600152LFB L91114-02AS L91114-02AS L91114-02AS	Type ICV ICB ICV ICB LFB AS	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13 10/29/24 11:43 10/29/24 12:58	PCN/SCN WI240821-3 WI241001-2 WI240821-4 WI240821-4 WI240821-4	QC 100 100 50 50 50	Sample 2.9 2.9	102.6 U 98.9 U 49.5 51.4	mg/L mg/L mg/L mg/L mg/L	103 99 99 99	90 -2.5 90 -2.5 85 85 85	110 2.5 110 2.5 115 115	1		Qual
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB WG600152LFB L91114-02AS L91114-02ASD	Type ICV ICB ICV ICB LFB AS ASD	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13 10/29/24 11:43 10/29/24 12:58 10/29/24 13:15	PCN/SCN WI240821-3 WI241001-2 WI240821-4 WI240821-4 WI240821-4 WI240821-4 SM 45000	QC 100 100 50 50 50 50 CI E-2011	Sample 2.9 2.9	102.6 U 98.9 U 49.5 51.4 51.8	mg/L mg/L mg/L mg/L mg/L	103 99 99 97 98	90 -2.5 90 -2.5 85 85 85	110 2.5 110 2.5 115 115 115	1	15	
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB WG600152LFB L91114-02AS L91114-02AS L91114-02AS L91114-02AS Chloride ACZ ID WG600650	Type ICV ICB ICV ICB LFB AS ASD	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13 10/29/24 11:43 10/29/24 12:58 10/29/24 13:15 Analyzed	PCN/SCN Wi240821-3 Wi241001-2 Wi240821-4 Wi240821-4 Wi240821-4 SM 45000 PCN/SCN	QC 100 100 50 50 50 50 CI E-2011 QC	Sample 2.9 2.9	102.6 U 98.9 U 49.5 51.4 51.8	mg/L mg/L mg/L mg/L mg/L mg/L	103 99 99 97 98 Rec%	90 -2.5 90 -2.5 85 85 85 85	110 2.5 110 2.5 115 115 115 115	1	15	
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB WG600152LFB L91114-02AS L91114-02AS L91114-02AS L91114-02AS Chloride ACZ ID WG600650 WG600650	Type ICV ICB ICV ICB LFB AS ASD Type ICV	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13 10/29/24 11:43 10/29/24 12:58 10/29/24 13:15 Analyzed 11/05/24 11:05	PCN/SCN WI240821-3 WI241001-2 WI240821-4 WI240821-4 WI240821-4 WI240821-4 SM 45000	QC 100 100 50 50 50 50 CI E-2011	Sample 2.9 2.9	102.6 U 98.9 U 49.5 51.4 51.8 Found	mg/L mg/L mg/L mg/L mg/L mg/L Units	103 99 99 97 98	90 -2.5 90 -2.5 85 85 85	110 2.5 110 2.5 115 115 115	1	15	
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB WG600152LFB L91114-02AS L91114-02AS L91114-02ASD Chloride ACZ ID WG600650 WG600650ICV WG600650ICV	Type ICV ICB ICV ICB LFB AS ASD Type ICV ICB	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13 10/29/24 11:43 10/29/24 12:58 10/29/24 13:15 Analyzed 11/05/24 11:05 11/05/24 11:05	PCN/SCN WI240821-3 WI241001-2 WI240821-4 WI240821-4 WI240821-4 SM 45000 PCN/SCN WI231211-1	QC 100 50 50 50 •CI E-2011 QC 39.96	Sample 2.9 2.9	102.6 U 98.9 U 49.5 51.4 51.8 Found 40.25 U	mg/L mg/L mg/L mg/L mg/L Units mg/L mg/L	103 99 97 98 Rec%	90 -2.5 90 -2.5 85 85 85 85 Lower	110 2.5 110 2.5 115 115 115 115 Upper 110	1	15	
ACZ ID WG596271 WG596271ICV WG596271ICB WG600152 WG600152ICV WG600152ICB WG600152LFB L91114-02AS L91114-02AS L91114-02AS L91114-02AS Chloride ACZ ID WG600650 WG600650	Type ICV ICB ICV ICB LFB AS ASD Type ICV	Analyzed 08/30/24 3:29 08/30/24 3:44 10/29/24 11:00 10/29/24 11:13 10/29/24 11:43 10/29/24 12:58 10/29/24 13:15 Analyzed 11/05/24 11:05	PCN/SCN Wi240821-3 Wi241001-2 Wi240821-4 Wi240821-4 Wi240821-4 SM 45000 PCN/SCN	QC 100 100 50 50 50 50 CI E-2011 QC	Sample 2.9 2.9	102.6 U 98.9 U 49.5 51.4 51.8 Found	mg/L mg/L mg/L mg/L mg/L mg/L Units	103 99 99 97 98 Rec%	90 -2.5 90 -2.5 85 85 85 85	110 2.5 110 2.5 115 115 115 115	1	15	

Inorganic QC Summary

TWIN

ACZ Project ID: L91136

Chromium, total			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600586													
WG600586ICV	ICV	11/04/24 13:19	MS241016-2	.05		.04788	mg/L	96	90	110			
WG600586ICB	ICB	11/04/24 13:20				U	mg/L		-0.0015	0.0015			
WG600424PBW	PBW	11/04/24 13:31				U	mg/L		-0.0015	0.0015			
WG600424LCSW	LCSW	11/04/24 13:33	MS241008-3	.05005		.04717	mg/L	94	80	120			
L91151-04MS	MS	11/04/24 14:20	MS241008-3	.05005	U	.04609	mg/L	92	75	125			
L91151-04MSD	MSD	11/04/24 14:22	MS241008-3	.05005	U	.04729	mg/L	94	75	125	3	20	
Cobalt, total			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600793													
WG600793ICV	ICV	11/06/24 17:44	MS241016-2	.05		.050166	mg/L	100	90	110			
WG600793ICB	ICB	11/06/24 17:45				U	mg/L		-0.00015	0.00015			
WG600037PBW	PBW	11/06/24 17:56				U	mg/L		-0.00015	0.00015			
WG600037LCSW	LCSW	11/06/24 17:58	MS241008-3	.05005		.05175	mg/L	103	80	120			
WG600424PBW	PBW	11/06/24 18:14				U	mg/L		-0.00015	0.00015			
WG600424LCSW	LCSW	11/06/24 18:16	MS241008-3	.05005		.0517	mg/L	103	80	120			
L91151-04MS	MS	11/06/24 18:48	MS241008-3	.05005	.000405	.053968	mg/L	107	75	125			
L91151-04MSD	MSD	11/06/24 18:50	MS241008-3	.05005	.000405	.055093	mg/L	109	75	125	2	20	
WG600585PBW	PBW	11/06/24 18:56				U	mg/L		-0.00015	0.00015			
WG600585LCSW	LCSW	11/06/24 18:57	MS241008-3	.05005		.05262	mg/L	105	80	120			
Conductivity @2	5C		SM 2510	B-2011									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600071													
WG600071LCSW2	LCSW	10/25/24 16:34	PCN627273	1410		1415	umhos/cm	100	90	110			
WG600071LCSW5	LCSW	10/25/24 18:45	PCN627273	1410		1419	umhos/cm	101	90	110			
L91146-02DUP	DUP	10/25/24 21:45			9410	9410	umhos/cm				0	20	
WG600071LCSW8	LCSW	10/25/24 21:56	PCN627273	1410		1423	umhos/cm	101	90	110			
WG600071LCSW11	LCSW	10/25/24 22:32	PCN627273	1410		1421	umhos/cm	101	90	110			
Copper, total			EPA 601	0D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600294													
WG600294ICV	ICV	10/29/24 23:26	II241022-1	2		1.991	mg/L	100	90	110			
WG600294ICB	ICB	10/29/24 23:29				U	mg/L		-0.03	0.03			
WG600160PBW	PBW	10/29/24 23:53				U	mg/L		-0.03	0.03			
WG600160LCSW	LCSW	10/29/24 23:57	II241018-2	.5005		.499	mg/L	100	80	120			
L91061-05MS	MS	10/30/24 1:12	II241018-2	.5005	U	.437	mg/L	87	75	125			
L91061-05MSD	MSD	10/30/24 1:23	II241018-2	.5005	U	.459	mg/L	92	75	125	5	20	

Inorganic QC Summary

TWIN

ACZ Project ID: L91136

Lead, total			EPA 602	OB									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600586													
WG600586ICV	ICV	11/04/24 13:19	MS241016-2	.05		.05171	mg/L	103	90	110			
WG600586ICB	ICB	11/04/24 13:20				U	mg/L		-0.0003	0.0003			
WG600424PBW	PBW	11/04/24 13:31				U	mg/L		-0.0003	0.0003			
WG600424LCSW	LCSW	11/04/24 13:33	MS241008-3	.05005		.05253	mg/L	105	80	120			
L91151-04MS	MS	11/04/24 14:20	MS241008-3	.05005	U	.0591	mg/L	118	75	125			
L91151-04MSD	MSD	11/04/24 14:22	MS241008-3	.05005	U	.05978	mg/L	119	75	125	1	20	
WG600793													
WG600793ICV	ICV	11/06/24 17:44	MS241016-2	.05		.05216	mg/L	104	90	110			
WG600793ICB	ICB	11/06/24 17:45				U	mg/L		-0.0003	0.0003			
WG600037PBW	PBW	11/06/24 17:56				U	mg/L		-0.0003	0.0003			
WG600037LCSW	LCSW	11/06/24 17:58	MS241008-3	.05005		.05482	mg/L	110	80	120			
WG600424PBW	PBW	11/06/24 18:14				U	mg/L		-0.0003	0.0003			
WG600424LCSW	LCSW	11/06/24 18:16	MS241008-3	.05005		.05537	mg/L	111	80	120			
L91151-04MS	MS	11/06/24 18:48	MS241008-3	.05005	U	.05914	mg/L	118	75	125			
L91151-04MSD	MSD	11/06/24 18:50	MS241008-3	.05005	U	.05837	mg/L	117	75	125	1	20	
WG600585PBW	PBW	11/06/24 18:56				U	mg/L		-0.0003	0.0003			
WG600585LCSW	LCSW	11/06/24 18:57	MS241008-3	.05005		.05097	mg/L	102	80	120			
Magnosium dis	solvod		EPA 601	חר									
Magnesium, dis ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Unite	Rec%	Lower	Upper	חספ	Limit	Qual
WG600869	турс	Analyzeu		40	oumpie	Tound	onito	Nec /i	Lower	Opper		Linin	Quui
	1011		1044000 7	100		07.04							
WG600869ICV	ICV	11/08/24 16:11	II241030-7	100		97.64	mg/L	98	90	110			
WG600869ICB	ICB	11/08/24 16:14	1044404 0	10.0500		U	mg/L		-0.6	0.6			
L90906-01AS	AS	11/08/24 16:51	II241101-3	49.9596	30.5	83.25	mg/L	106	75	125			
L90906-01ASD	ASD	11/08/24 16:55	II241101-3	49.9596	30.5	81.7	mg/L	102	75	125	2	20	
Nickel, total			EPA 601	0D									
,													
	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
ACZ ID	Туре	Analyzed		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
ACZ ID WG600294	Type	Analyzed 10/29/24 23:26		QC 2.004	Sample	Found 1.878	Units mg/L	Rec% 94	Lower 90	Upper 110	RPD	Limit	Qual
ACZ ID WG600294 WG600294ICV			PCN/SCN		Sample						RPD	Limit	Qual
ACZ ID WG600294 WG600294ICV WG600294ICB	ICV	10/29/24 23:26	PCN/SCN		Sample	1.878	mg/L		90	110	RPD	Limit	Qual
ACZ ID WG600294 WG600294ICV WG600294ICB WG600160PBW	ICV ICB	10/29/24 23:26 10/29/24 23:29	PCN/SCN		Sample	1.878 U	mg/L mg/L		90 -0.024	110 0.024	RPD	Limit	Qual
ACZ ID WG600294 WG600294ICV WG600294ICB WG600160PBW WG600160LCSW	ICV ICB PBW	10/29/24 23:26 10/29/24 23:29 10/29/24 23:53	PCN/SCN	2.004	Sample	1.878 U U	mg/L mg/L mg/L	94	90 -0.024 -0.024	110 0.024 0.024	RPD	Limit	Qual
ACZ ID WG600294 WG600294ICV WG600294ICB WG600160PBW WG600160LCSW L91061-05MS L91061-05MSD	ICV ICB PBW LCSW	10/29/24 23:26 10/29/24 23:29 10/29/24 23:53 10/29/24 23:57	PCN/SCN	2.004		1.878 U U .4824	mg/L mg/L mg/L mg/L	94 96	90 -0.024 -0.024 80	110 0.024 0.024 120	RPD	Limit 20	Qual
ACZ ID WG600294 WG600294ICV WG600294ICB WG600160PBW WG600160LCSW L91061-05MS	ICV ICB PBW LCSW MS MSD	10/29/24 23:26 10/29/24 23:29 10/29/24 23:53 10/29/24 23:57 10/30/24 1:12	PCN/SCN II241022-1 II241018-2 II241018-2	2.004 .5005 .5005 .5005	U	1.878 U U .4824 .449	mg/L mg/L mg/L mg/L mg/L	94 96 90	90 -0.024 -0.024 80 75	110 0.024 0.024 120 125			Qual
ACZ ID WG600294 WG600294ICV WG600294ICB WG600160PBW WG600160LCSW L91061-05MS L91061-05MS DNitrate/Nitrite as	ICV ICB PBW LCSW MS MSD	10/29/24 23:26 10/29/24 23:29 10/29/24 23:53 10/29/24 23:57 10/30/24 1:12	PCN/SCN II241022-1 II241018-2 II241018-2 II241018-2	2.004 .5005 .5005 .5005	U	1.878 U U .4824 .449	mg/L mg/L mg/L mg/L mg/L	94 96 90	90 -0.024 -0.024 80 75 75	110 0.024 0.024 120 125	4		Qual
ACZ ID WG600294ICV WG600294ICB WG600160PBW WG600160LCSW L91061-05MS L91061-05MSD	ICV ICB PBW LCSW MS MSD	10/29/24 23:26 10/29/24 23:29 10/29/24 23:53 10/29/24 23:57 10/30/24 1:12 10/30/24 1:23	PCN/SCN II241022-1 II241018-2 II241018-2 II241018-2 EPA 353	2.004 .5005 .5005 .5005 2	U U	1.878 U U .4824 .449 .466	mg/L mg/L mg/L mg/L mg/L	94 96 90 93	90 -0.024 -0.024 80 75 75	110 0.024 0.024 120 125 125	4	20	
ACZ ID WG600294 WG600294ICV WG600294ICB WG600160PBW WG600160LCSW L91061-05MS L91061-05MS Nitrate/Nitrite as ACZ ID WG600020	ICV ICB PBW LCSW MSD MSD	10/29/24 23:26 10/29/24 23:29 10/29/24 23:53 10/29/24 23:57 10/30/24 1:12 10/30/24 1:23 Analyzed	PCN/SCN II241022-1 II241018-2 II241018-2 II241018-2 EPA 353	2.004 .5005 .5005 .5005 2 QC	U U	1.878 U .4824 .449 .466	mg/L mg/L mg/L mg/L mg/L	94 96 90 93	90 -0.024 -0.024 80 75 75 Lower	110 0.024 0.024 120 125 125 Upper	4	20	
ACZ ID WG600294ICV WG600294ICB WG600160PBW WG600160LCSW L91061-05MS L91061-05MSD Nitrate/Nitrite as ACZ ID	ICV ICB PBW LCSW MS MSD	10/29/24 23:26 10/29/24 23:29 10/29/24 23:53 10/29/24 23:57 10/30/24 1:12 10/30/24 1:23	PCN/SCN II241022-1 II241018-2 II241018-2 II241018-2 II241018-2 EPA 353 PCN/SCN	2.004 .5005 .5005 .5005 2	U U	1.878 U U .4824 .449 .466	mg/L mg/L mg/L mg/L mg/L	94 96 90 93 Rec%	90 -0.024 -0.024 80 75 75 Lower 90	110 0.024 0.024 120 125 125	4	20	
ACZ ID WG600294 WG600294ICV WG600294ICB WG600160PBW WG600160LCSW L91061-05MS L91061-05MS L91061-05MSD Nitrate/Nitrite as ACZ ID WG600020 WG600020ICV	ICV ICB PBW LCSW MS MSD N Type ICV ICB	10/29/24 23:26 10/29/24 23:29 10/29/24 23:53 10/29/24 23:57 10/30/24 1:12 10/30/24 1:23 Analyzed 10/24/24 23:28 10/24/24 23:29	PCN/SCN II241022-1 II241018-2 II241018-2 II241018-2 II241018-2 EPA 353 PCN/SCN	2.004 .5005 .5005 .5005 2 2 2.416	U U	1.878 U U .4824 .449 .466 Found	mg/L mg/L mg/L mg/L mg/L Units	94 96 90 93 Rec%	90 -0.024 -0.024 80 75 75 Lower 90 -0.02	110 0.024 0.024 120 125 125 125 Upper 110 0.02	4	20	
ACZ ID WG600294 WG600294ICV WG600294ICB WG600160PBW WG600160LCSW L91061-05MS L91061-05MS L91061-05MSD Nitrate/Nitrite as ACZ ID WG600020 WG600020ICV WG600020ICV	ICV ICB PBW LCSW MSD MSD	10/29/24 23:26 10/29/24 23:29 10/29/24 23:53 10/29/24 23:57 10/30/24 1:12 10/30/24 1:23 Analyzed 10/24/24 23:28	PCN/SCN II241022-1 II241018-2 II241018-2 II241018-2 EPA 353 PCN/SCN WI240725-5	2.004 .5005 .5005 .5005 2 QC	U U	1.878 U .4824 .449 .466 Found	mg/L mg/L mg/L mg/L mg/L Units	94 96 90 93 Rec% 99	90 -0.024 -0.024 80 75 75 Lower 90	110 0.024 0.024 120 125 125 125 Upper	4	20	

Inorganic QC Summary

(800) 334-5493

TWIN

ACZ Project ID: L91136

Nitrite as N			EPA 353	5.2									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600020													
WG600020ICV	ICV	10/24/24 23:28	WI240725-5	.609		.612	mg/L	100	90	110			
WG600020ICB	ICB	10/24/24 23:29				U	mg/L		-0.01	0.01			
WG600020LFB	LFB	10/24/24 23:33	WI240828-3	1		1.009	mg/L	101	90	110			
L91132-02AS	AS	10/24/24 23:55	WI240828-3	1	U	1.011	mg/L	101	90	110			
L91132-03DUP	DUP	10/24/24 23:58			U	U	mg/L				0	20	RA
pH (lab)			SM4500	H+ B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600071													
WG600071LCSW1	LCSW	10/25/24 16:32	PCN624449	6		5.99	units	100	5.9	6.1			
WG600071LCSW4	LCSW	10/25/24 18:42	PCN624449	6		6	units	100	5.9	6.1			
L91146-02DUP	DUP	10/25/24 21:45			7.8	7.1	units				9	20	
WG600071LCSW7	LCSW	10/25/24 21:53	PCN624449	6		5.99	units	100	5.9	6.1			
WG600071LCSW10	LCSW	10/25/24 22:29	PCN624449	6		5.99	units	100	5.9	6.1			
Potassium, disso	lved		EPA 601	0D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600869													
WG600869ICV	ICV	11/08/24 16:11	II241030-7	20		19.52	mg/L	98	90	110			
WG600869ICB	ICB	11/08/24 16:14				U	mg/L		-1.5	1.5			
L90906-01AS	AS	11/08/24 16:51	II241101-3	100.0859	1.55	107	mg/L	105	75	125			
L90906-01ASD	ASD	11/08/24 16:55	II241101-3	100.0859	1.55	105.1	mg/L	103	75	125	2	20	
Selenium, total			EPA 602	20B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600586													
WG600586ICV	ICV	11/04/24 13:19	MS241016-2	.05		.05085	mg/L	102	90	110			
WG600586ICB	ICB	11/04/24 13:20		.00		.00000	mg/L	102	-0.0003	0.0003			
WG600424PBW	PBW	11/04/24 13:31				U	mg/L		-0.0003	0.0003			
WG600424LCSW	LCSW	11/04/24 13:33	MS241008-3	.05005		.04955	mg/L	99	80	120			
L91151-04MS	MS	11/04/24 14:20	MS241008-3	.05005	U	.03666	mg/L	73	75	125			MA
L91151-04MSD	MSD	11/04/24 14:22	MS241008-3	.05005	U	.03733	mg/L	75	75	125	2	20	
Silver, total			EPA 602	20B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600586													
WG600586ICV	ICV	11/04/24 13:19	MS241016-2	.02		.02023	mg/L	101	90	110			
WG600586ICV WG600586ICB	ICB	11/04/24 13:19	MOL-1010-Z	.02		.02023 U	mg/L	101	90 -0.0003	0.0003			
		11/04/24 13:20				U	-						
WG600424PBW	PBW		MS241008-3	04			mg/L	00	-0.0003	0.0003			
WG600424LCSW	LCSW	11/04/24 13:33		.01	00070	.00983	mg/L	98 74	80 75	120			
L91151-04MS	MS	11/04/24 14:20	MS241008-3	.01	.00376	.01119	mg/L	74	75	125	~	00	MA
L91151-04MSD	MSD	11/04/24 14:22	MS241008-3	.01	.00376	.01149	mg/L	77	75	125	3	20	

Inorganic QC Summary

(800) 334-5493

TWIN

ACZ Project ID: L91136

Sodium, dissolv	ed		EPA 601	0D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600869													
WG600869ICV	ICV	11/08/24 16:11	II241030-7	100		98.62	mg/L	99	90	110			
WG600869ICB	ICB	11/08/24 16:14				U	mg/L		-0.6	0.6			
L90906-01AS	AS	11/08/24 16:51	II241101-3	100.0817	299	389	mg/L	90	75	125			
L90906-01ASD	ASD	11/08/24 16:55	II241101-3	100.0817	299	384	mg/L	85	75	125	1	20	
Sulfate			ASTM D	516-07/-11/-	-16								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600615													
WG600615ICV	ICV	11/05/24 13:56	WI241028-5	20.02		21.2	mg/L	106	85	115			
WG600615ICB	ICB	11/05/24 13:56				U	mg/L		-2.5	2.5			
WG600615LFB	LFB	11/05/24 14:06	WI241001-1	10		10.8	mg/L	108	85	115			
L91114-01AS	AS	11/05/24 14:15	SO4TURB5X	10	36	40.3	mg/L	43	85	115			M2
L91114-01ASD	ASD	11/05/24 14:15	SO4TURB5X	10	36	43.8	mg/L	78	85	115	8	20	M2
Thallium, total			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600586													
WG600586ICV	ICV	11/04/24 13:19	MS241016-2	.05		.05003	mg/L	100	90	110			
WG600586ICB	ICB	11/04/24 13:20				U	mg/L		-0.0003	0.0003			
WG600424PBW	PBW	11/04/24 13:31				U	mg/L		-0.0003	0.0003			
WG600424LCSW	LCSW	11/04/24 13:33	MS241008-3	.0501		.04872	mg/L	97	80	120			
L91151-04MS	MS	11/04/24 14:20	MS241008-3	.0501	U	.05778	mg/L	115	75	125			
L91151-04MSD	MSD	11/04/24 14:22	MS241008-3	.0501	U	.05855	mg/L	117	75	125	1	20	
Vanadium, total			EPA 601	0D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600294													
WG600294ICV	ICV	10/29/24 23:26	II241022-1	2		2.025	mg/L	101	90	110			
WG600294ICB	ICB	10/29/24 23:29				U	mg/L		-0.03	0.03			
WG600160PBW	PBW	10/29/24 23:53				U	mg/L		-0.03	0.03			
WG600160LCSW	LCSW	10/29/24 23:57	II241018-2	.5005		.502	mg/L	100	80	120			
L91061-05MS	MS	10/30/24 1:12	II241018-2	.5005	U	.448	mg/L	90	75	125			
L91061-05MSD	MSD	10/30/24 1:23	II241018-2	.5005	U	.468	mg/L	94	75	125	4	20	

Inorganic QC Summary

(800) 334-5493

TWIN

ACZ Project ID: L91136

Zinc, total			EPA 602	ĴВ									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG600586													
WG600586ICV	ICV	11/04/24 13:19	MS241016-2	.05		.0472	mg/L	94	90	110			
WG600586ICB	ICB	11/04/24 13:20				U	mg/L		-0.018	0.018			
WG600424PBW	PBW	11/04/24 13:31				U	mg/L		-0.018	0.018			
WG600424LCSW	LCSW	11/04/24 13:33	MS241008-3	.050015		.0501	mg/L	100	80	120			
L91151-04MS	MS	11/04/24 14:20	MS241008-3	.050015	U	.0577	mg/L	115	75	125			
L91151-04MSD	MSD	11/04/24 14:22	MS241008-3	.050015	U	.0576	mg/L	115	75	125	0	20	
WG600793													
WG600793ICV	ICV	11/06/24 17:44	MS241016-2	.05		.0493	mg/L	99	90	110			
WG600793ICB	ICB	11/06/24 17:45				U	mg/L		-0.018	0.018			
WG600037PBW	PBW	11/06/24 17:56				U	mg/L		-0.018	0.018			
WG600037LCSW	LCSW	11/06/24 17:58	MS241008-3	.050015		.052	mg/L	104	80	120			
WG600424PBW	PBW	11/06/24 18:14				U	mg/L		-0.018	0.018			
WG600424LCSW	LCSW	11/06/24 18:16	MS241008-3	.050015		.0521	mg/L	104	80	120			
L91151-04MS	MS	11/06/24 18:48	MS241008-3	.050015	U	.0605	mg/L	121	75	125			
L91151-04MSD	MSD	11/06/24 18:50	MS241008-3	.050015	U	.0604	mg/L	121	75	125	0	20	
WG600585PBW	PBW	11/06/24 18:56				U	mg/L		-0.018	0.018			
WG600585LCSW	LCSW	11/06/24 18:57	MS241008-3	.050015		.0507	mg/L	101	80	120			

(800) 334-5493

ACZ Project ID: L91136

Twin Landfill Corporation

-					
ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L91136-01	NG600586	Cadmium, total	EPA 6020B	N1	See Case Narrative.
	WG600020	Nitrate/Nitrite as N	EPA 353.2	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 353.2	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N	EPA 353.2	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 353.2	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG600869	Potassium, dissolved	EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG600586	Selenium, total	EPA 6020B	DH	Sample required dilution due to high TDS and/or EC value.
			EPA 6020B	EA	Concentration estimated. Analytical result was less than the negative MDL due to matrix interferences.
			EPA 6020B	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
		Silver, total	EPA 6020B	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG600869	Sodium, dissolved	EPA 6010D	BB	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
	WG600615	Sulfate	ASTM D516-07/-11/-16	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG600586	Thallium, total	EPA 6020B	N1A	See Case Narrative.
	WG600160	Total Hot Plate Digestion	EPA 3010A	DH	Sample required dilution due to high TDS and/or EC value.

(800) 334-5493

ACZ Project ID: L91136

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L91136-02	NG600586	Cadmium, total	EPA 6020B	N1	See Case Narrative.
		Lead, total	EPA 6020B	N1A	See Case Narrative.
	WG600020	Nitrate/Nitrite as N	EPA 353.2	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 353.2	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N	EPA 353.2	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 353.2	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG600869	Potassium, dissolved	EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG600586	Selenium, total	EPA 6020B	DH	Sample required dilution due to high TDS and/or EC value.
			EPA 6020B	EA	Concentration estimated. Analytical result was less than the negative MDL due to matrix interferences.
			EPA 6020B	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
		Silver, total	EPA 6020B	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG600869	Sodium, dissolved	EPA 6010D	BB	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
	WG600615	Sulfate	ASTM D516-07/-11/-16	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG600586	Thallium, total	EPA 6020B	N1A	See Case Narrative.
	WG600160	Total Hot Plate Digestion	EPA 3010A	DH	Sample required dilution due to high TDS and/or EC value.
	WG600586	Zinc, total	EPA 6020B	N1A	See Case Narrative.

ACZ Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Twin Landfill Corporation

Project ID: Sample ID: MOD 1 ACZ Sample ID: **L91136-01** Date Sampled: 10/24/24 9:55 Date Received: 10/24/24 Sample Matrix: Groundwater

Volatile Organics by GC/MS

Analysis Method: **EPA 8260C/D** Extract Method:

Workgroup: WG600356

Analyst: ipc

Extract Date: Analysis Date: 10/30/24 16:24

Compound	CAS	Result	QUAL	Dilution	XQ	Units	MDL	PQL
1,1,1,2-Tetrachloroethane	630-20-6	<0.5	U	1	*	ug/L	0.5	1
1,1,1-Trichloroethane	71-55-6	<0.5	U	1	*	ug/L	0.5	2
1,1,2,2-Tetrachloroethane	79-34-5	<0.01	U	1	*	ug/L	0.01	0.01
1,1,2-Trichloroethane	79-00-5	<0.5	U	1	*	ug/L	0.5	1
1,1-Dichloroethane	75-34-3	<0.5	U	1	*	ug/L	0.5	1
1,1-Dichloroethene	75-35-4	<0.5	U	1	*	ug/L	0.5	1
1,2,3-Trichloropropane	96-18-4	<0.5	U	1	*	ug/L	0.5	1
1,2-Dibromo-3-chloropropane	96-12-8	<0.5	U	1	*	ug/L	0.5	1
1,2-Dibromoethane	106-93-4	<0.01	U	1	*	ug/L	0.01	0.01
1,2-Dichlorobenzene	95-50-1	<0.5	U	1	*	ug/L	0.5	1
1,2-Dichloroethane	107-06-2	<0.5	U	1	*	ug/L	0.5	1
1,2-Dichloropropane	78-87-5	<0.5	U	1	*	ug/L	0.5	1
1,4-Dichlorobenzene	106-46-7	<0.5	U	1	*	ug/L	0.5	1
2-Butanone	78-93-3	10.1		1	*	ug/L	0.5	2
2-Hexanone	591-78-6	<0.5	U	1	*	ug/L	0.5	2
4-Methyl-2-Pentanone	108-10-1	0.82	J	1	*	ug/L	0.5	2
Acetone	67-64-1	19.7		1	*	ug/L	2	10
Acrylonitrile	107-13-1	<0.05	U	1	*	ug/L	0.05	0.05
Benzene	71-43-2	4.24		1	*	ug/L	0.2	1
Bromochloromethane	74-97-5	<0.5	U	1	*	ug/L	0.5	1
Bromodichloromethane	75-27-4	<0.5	U	1	*	ug/L	0.5	1
Bromoform	75-25-2	<0.5	U	1	*	ug/L	0.5	1
Bromomethane	74-83-9	<0.5	U	1	*	ug/L	0.5	2
Carbon Disulfide	75-15-0	<0.5	U	1	*	ug/L	0.5	1
Carbon Tetrachloride	56-23-5	<0.5	U	1	*	ug/L	0.5	1
Chlorobenzene	108-90-7	<0.5	U	1	*	ug/L	0.5	1
Chloroethane	75-00-3	<0.5	U	1	*	ug/L	0.5	2
Chloroform	67-66-3	<0.5	U	1	*	ug/L	0.5	1
Chloromethane	74-87-3	0.51	J	1	*	ug/L	0.5	1
cis-1,2-Dichloroethene	156-59-2	<0.5	U	1	*	ug/L	0.5	1
cis-1,3-Dichloropropene	10061-01-5	<0.5	U	1	*	ug/L	0.5	1
Dibromochloromethane	124-48-1	<0.5	U	1	*	ug/L	0.5	1
Dibromomethane	74-95-3	0.021		1	*	ug/L	0.01	0.01
Ethylbenzene	100-41-4	<0.2	U	1	*	ug/L	0.2	1
lodomethane	74-88-4	<0.5	U	1	*	ug/L	0.5	1
m p Xylene	1330-20-7	0.74	J	1	*	ug/L	0.4	2
Methylene Chloride	75-09-2	<0.5	U	1	*	ug/L	0.5	1
o Xylene	95-47-6	1.24		1	*	ug/L	0.2	1

REPOR.01.01.01.02

* Please refer to Qualifier Reports for details.

(800) 334-5493

Twin Landfill Corporation Project ID: Sample ID: MOD 1			Date Date	Sample II e Sampleo e Receiveo nple Matri	d: 1 d: 1	-91136- 10/24/24 10/24/24 Groundv	4 9:55 4	
Styrene	100-42-5	<0.5	U	1	*	ug/L	0.5	1
Tetrachloroethene	127-18-4	<0.5	U	1	*	ug/L	0.5	1
Toluene	108-88-3	0.72	J	1	*	ug/L	0.2	1
trans-1,2-Dichloroethene	156-60-5	<0.5	U	1	*	ug/L	0.5	1
trans-1,3-Dichloropropene	10061-02-6	<0.5	U	1	*	ug/L	0.5	1
trans-1,4-Dichloro-2-butene	110-57-6	<0.5	U	1	*	ug/L	0.5	1
Trichloroethene	79-01-6	<0.5	U	1	*	ug/L	0.5	1
Trichlorofluoromethane	75-69-4	<0.5	U	1	*	ug/L	0.5	1
Vinyl Acetate	108-05-4	<0.5	U	1	*	ug/L	0.5	2
Vinyl Chloride	75-01-4	0.051		1	*	ug/L	0.02	0.05
Surrogate Recoveries	CAS	% Recovery		Dilution	XQ	Units	LCL	UCL
Bromofluorobenzene	30135-88-7	100.8		1		%	70	130
Dibromofluoromethane	1868-53-7	103		1		%	70	130
Toluene-d8	2037-26-5	97.2		1		%	70	130

ACZ Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Twin Landfill Corporation

Project ID: Sample ID: TANK 5/6

Volatile Organics by GC/MS

Analysis Method: **EPA 8260C/D** Extract Method:

Workgroup: WG600356

Analyst: ipc

Extract Date: Analysis Date: 10/30/24 16:53

Compound	CAS	Result	QUAL	Dilution	XQ	Units	MDL	PQL
1,1,1,2-Tetrachloroethane	630-20-6	<0.5	U	1	*	ug/L	0.5	1
1,1,1-Trichloroethane	71-55-6	<0.5	U	1	*	ug/L	0.5	2
1,1,2,2-Tetrachloroethane	79-34-5	<0.01	U	1	*	ug/L	0.01	0.01
1,1,2-Trichloroethane	79-00-5	<0.5	U	1	*	ug/L	0.5	1
1,1-Dichloroethane	75-34-3	<0.5	U	1	*	ug/L	0.5	1
1,1-Dichloroethene	75-35-4	<0.5	U	1	*	ug/L	0.5	1
1,2,3-Trichloropropane	96-18-4	<0.5	U	1	*	ug/L	0.5	1
1,2-Dibromo-3-chloropropane	96-12-8	<0.5	U	1	*	ug/L	0.5	1
1,2-Dibromoethane	106-93-4	<0.01	U	1	*	ug/L	0.01	0.01
1,2-Dichlorobenzene	95-50-1	<0.5	U	1	*	ug/L	0.5	1
1,2-Dichloroethane	107-06-2	<0.5	U	1	*	ug/L	0.5	1
1,2-Dichloropropane	78-87-5	<0.5	U	1	*	ug/L	0.5	1
1,4-Dichlorobenzene	106-46-7	<0.5	U	1	*	ug/L	0.5	1
2-Butanone	78-93-3	3.7		1	*	ug/L	0.5	2
2-Hexanone	591-78-6	<0.5	U	1	*	ug/L	0.5	2
4-Methyl-2-Pentanone	108-10-1	<0.5	U	1	*	ug/L	0.5	2
Acetone	67-64-1	5.2	J	1	*	ug/L	2	10
Acrylonitrile	107-13-1	<0.05	U	1	*	ug/L	0.05	0.05
Benzene	71-43-2	<0.2	U	1		ug/L	0.2	1
Bromochloromethane	74-97-5	<0.5	U	1	*	ug/L	0.5	1
Bromodichloromethane	75-27-4	<0.5	U	1	*	ug/L	0.5	1
Bromoform	75-25-2	<0.5	U	1	*	ug/L	0.5	1
Bromomethane	74-83-9	<0.5	U	1	*	ug/L	0.5	2
Carbon Disulfide	75-15-0	<0.5	U	1	*	ug/L	0.5	1
Carbon Tetrachloride	56-23-5	<0.5	U	1	*	ug/L	0.5	1
Chlorobenzene	108-90-7	<0.5	U	1	*	ug/L	0.5	1
Chloroethane	75-00-3	<0.5	U	1	*	ug/L	0.5	2
Chloroform	67-66-3	<0.5	U	1	*	ug/L	0.5	1
Chloromethane	74-87-3	<0.5	U	1	*	ug/L	0.5	1
cis-1,2-Dichloroethene	156-59-2	<0.5	U	1	*	ug/L	0.5	1
cis-1,3-Dichloropropene	10061-01-5	<0.5	U	1	*	ug/L	0.5	1
Dibromochloromethane	124-48-1	<0.5	U	1	*	ug/L	0.5	1
Dibromomethane	74-95-3	0.012		1	*	ug/L	0.01	0.01
Ethylbenzene	100-41-4	<0.2	U	1	*	ug/L	0.2	1
lodomethane	74-88-4	<0.5	U	1	*	ug/L	0.5	1
m p Xylene	1330-20-7	<0.4	U	1	*	ug/L	0.4	2
Methylene Chloride	75-09-2	<0.5	U	1	*	ug/L	0.5	1
o Xylene	95-47-6	<0.2	U	1	*	ug/L	0.2	1

REPOR.01.01.01.02

* Please refer to Qualifier Reports for details.

ACZ Sample ID: **L91136-02** Date Sampled: 10/24/24 9:30 Date Received: 10/24/24 Sample Matrix: Groundwater

(800) 334-5493

Twin Landfill Corporation Project ID: Sample ID: TANK 5/6			Date Date	Sample II e Sampleo e Receiveo nple Matrix	d: 1 d: 1	10/24/24 10/24/24	4 9:30 4	
Styrene	100-42-5	<0.5	U	1	*	ug/L	0.5	1
Tetrachloroethene	127-18-4	<0.5	U	1	*	ug/L	0.5	1
Toluene	108-88-3	<0.2	U	1	*	ug/L	0.2	1
trans-1,2-Dichloroethene	156-60-5	<0.5	U	1	*	ug/L	0.5	1
trans-1,3-Dichloropropene	10061-02-6	<0.5	U	1	*	ug/L	0.5	1
trans-1,4-Dichloro-2-butene	110-57-6	<0.5	U	1	*	ug/L	0.5	1
Trichloroethene	79-01-6	<0.5	U	1	*	ug/L	0.5	1
Trichlorofluoromethane	75-69-4	<0.5	U	1	*	ug/L	0.5	1
Vinyl Acetate	108-05-4	<0.5	U	1	*	ug/L	0.5	2
Vinyl Chloride	75-01-4	0.03	J	1	*	ug/L	0.02	0.05
Surrogate Recoveries	CAS	% Recovery		Dilution	XQ	Units	LCL	UCL
Bromofluorobenzene	30135-88-7	100.4		1		%	70	130
Dibromofluoromethane	1868-53-7	100.5		1		%	70	130
Toluene-d8	2037-26-5	96.2		1		%	70	130

ACZ Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Twin Landfill Corporation

Project ID: Sample ID: TB241023-07 ACZ Sample ID: **L91136-03** Date Sampled: 10/24/24 0:00 Date Received: 10/24/24 Sample Matrix: Groundwater

Volatile Organics by GC/MS

Analysis Method: **EPA 8260C/D** Extract Method:

Workgroup: WG600356

Analyst: ipc

Extract Date: Analysis Date: 10/30/24 14:03

Compound	CAS	Result	QUAL	Dilution	XQ	Units	MDL	PQL
1,1,1,2-Tetrachloroethane	630-20-6	<0.5	U	1	*	ug/L	0.5	1
1,1,1-Trichloroethane	71-55-6	<0.5	U	1	*	ug/L	0.5	2
1,1,2,2-Tetrachloroethane	79-34-5	<0.01	U	1	*	ug/L	0.01	0.01
1,1,2-Trichloroethane	79-00-5	<0.5	U	1	*	ug/L	0.5	1
1,1-Dichloroethane	75-34-3	<0.5	U	1	*	ug/L	0.5	1
1,1-Dichloroethene	75-35-4	<0.5	U	1	*	ug/L	0.5	1
1,2,3-Trichloropropane	96-18-4	<0.5	U	1	*	ug/L	0.5	1
1,2-Dibromo-3-chloropropane	96-12-8	<0.5	U	1	*	ug/L	0.5	1
1,2-Dibromoethane	106-93-4	<0.01	U	1	*	ug/L	0.01	0.01
1,2-Dichlorobenzene	95-50-1	<0.5	U	1	*	ug/L	0.5	1
1,2-Dichloroethane	107-06-2	<0.5	U	1	*	ug/L	0.5	1
1,2-Dichloropropane	78-87-5	<0.5	U	1	*	ug/L	0.5	1
1,4-Dichlorobenzene	106-46-7	<0.5	U	1	*	ug/L	0.5	1
2-Butanone	78-93-3	<0.5	U	1	*	ug/L	0.5	2
2-Hexanone	591-78-6	<0.5	U	1	*	ug/L	0.5	2
4-Methyl-2-Pentanone	108-10-1	<0.5	U	1	*	ug/L	0.5	2
Acetone	67-64-1	<2	U	1	*	ug/L	2	10
Acrylonitrile	107-13-1	<0.05	U	1	*	ug/L	0.05	0.05
Benzene	71-43-2	<0.2	U	1		ug/L	0.2	1
Bromochloromethane	74-97-5	<0.5	U	1	*	ug/L	0.5	1
Bromodichloromethane	75-27-4	<0.5	U	1	*	ug/L	0.5	1
Bromoform	75-25-2	<0.5	U	1	*	ug/L	0.5	1
Bromomethane	74-83-9	<0.5	U	1	*	ug/L	0.5	2
Carbon Disulfide	75-15-0	<0.5	U	1	*	ug/L	0.5	1
Carbon Tetrachloride	56-23-5	<0.5	U	1	*	ug/L	0.5	1
Chlorobenzene	108-90-7	<0.5	U	1	*	ug/L	0.5	1
Chloroethane	75-00-3	<0.5	U	1	*	ug/L	0.5	2
Chloroform	67-66-3	<0.5	U	1	*	ug/L	0.5	1
Chloromethane	74-87-3	<0.5	U	1	*	ug/L	0.5	1
cis-1,2-Dichloroethene	156-59-2	<0.5	U	1	*	ug/L	0.5	1
cis-1,3-Dichloropropene	10061-01-5	<0.5	U	1	*	ug/L	0.5	1
Dibromochloromethane	124-48-1	<0.5	U	1	*	ug/L	0.5	1
Dibromomethane	74-95-3	<0.01	U	1	*	ug/L	0.01	0.01
Ethylbenzene	100-41-4	<0.2	U	1	*	ug/L	0.2	1
lodomethane	74-88-4	<0.5	U	1	*	ug/L	0.5	1
m p Xylene	1330-20-7	<0.4	U	1	*	ug/L	0.4	2
Methylene Chloride	75-09-2	<0.5	U	1	*	ug/L	0.5	1
o Xylene	95-47-6	<0.2	U	1	*	ug/L	0.2	1

REPOR.01.01.01.02

* Please refer to Qualifier Reports for details.

(800) 334-5493

Twin Landfill Corporation Project ID: Sample ID: TB241023-07			Dat Date	Sample II e Sampleo e Receiveo nple Matri	d: 1 d: 1	.91136 0/24/24 0/24/24 Ground	4 0:00 4	
Styrene	100-42-5	<0.5	U	1	*	ug/L	0.5	1
Tetrachloroethene	127-18-4	<0.5	U	1	*	ug/L	0.5	1
Toluene	108-88-3	<0.2	U	1	*	ug/L	0.2	1
trans-1,2-Dichloroethene	156-60-5	<0.5	U	1	*	ug/L	0.5	1
trans-1,3-Dichloropropene	10061-02-6	<0.5	U	1	*	ug/L	0.5	1
trans-1,4-Dichloro-2-butene	110-57-6	<0.5	U	1	*	ug/L	0.5	1
Trichloroethene	79-01-6	<0.5	U	1	*	ug/L	0.5	1
Trichlorofluoromethane	75-69-4	<0.5	U	1	*	ug/L	0.5	1
Vinyl Acetate	108-05-4	<0.5	U	1	*	ug/L	0.5	2
Vinyl Chloride	75-01-4	<0.02	U	1	*	ug/L	0.02	0.05
Surrogate Recoveries	CAS	% Recovery		Dilution	XQ	Units	LCL	UCL
Bromofluorobenzene	30135-88-7	99.7		1		%	70	130
Dibromofluoromethane	1868-53-7	101.1		1		%	70	130
Toluene-d8	2037-26-5	96.2		1		%	70	130

Organic Reference

_					
Rep	ort Header	Explanations			
	Batch	A distinct set of san	nples analyzed at a specific time		
	Found	Value of the QC Ty	be of interest		
	Limit	Upper limit for RPD	, in %.		
	Lower	Lower Recovery Lin	nit, in % (except for LCSS, mg/Kg)		
	LCL	Lower Control Limit			
	MDL	Method Detection L	imit. Same as Minimum Reporting	Limit unless omitted or ed	qual to the PQL (see comment #4)
		Allows for instrumer	nt and annual fluctuations.		
	PCN/SCN	A number assigned	to reagents/standards to trace to th	e manufacturer's certifica	ate of analysis
	PQL	Practical Quantitation	on Limit. Synonymous with the EPA	term "minimum level".	
	QC	True Value of the C	ontrol Sample or the amount added	to the Spike	
	Rec	Amount of the true	value or spike added recovered, in a	% (except for LCSS, mg/ł	≺ g)
	RPD	Relative Percent Di	fference, calculation used for Duplic	ate QC Types	
	Upper	Upper Recovery Lin	nit, in % (except for LCSS, mg/Kg)		
	UCL	Upper Control Limit			
	Sample	Value of the Sample	e of interest		
QC	Sample Typ	pes			
	SURR	Surrogate		LFB	Laboratory Fortified Blank
	INTS	Internal Standard		LFM	Laboratory Fortified Matrix
	AS	Analytical Spike (Po	est Digestion)	LFMD	Laboratory Fortified Matrix Duplicate
	ASD	Analytical Spike (Po	est Digestion) Duplicate	LRB	Laboratory Reagent Blank
	DUP	Sample Duplicate		MS/MSD	Matrix Spike/Matrix Spike Duplicate
	LCSS	Laboratory Control	Sample - Soil	PBS	Prep Blank - Soil
	LCSW	Laboratory Control	Sample - Water	PBW	Prep Blank - Water
00	Somalo Tur	be Explanations			
	Blanks		Verifies that there is no or min	imal contamination in the	prep method or calibration procedure.
	Control San	nnles	Verifies the accuracy of the m		
	Duplicates	ipics	Verifies the precision of the in		
	Spikes/Forti	ified Matrix	Determines sample matrix inte		
_	opinioo,r ora			, in any:	
	Qualifiers	(Qual)			
	0	Analyte concentration	on is estimated due to result exceed	ling calibration range.	
	Н	Analysis exceeded	method hold time. pH is a field test	with an immediate hold ti	me.
	J	-	on detected at a value between MDI		ed value is an estimated quantity.
	L		onse was below the laboratory defin		
	U		nalyzed for, but was not detected ab		
		The associated value	ie is either the sample quantitation l	imit or the sample detection	ion limit.
Met	hod Referei	nces			
	(1)	EPA 600/4-83-020.	Methods for Chemical Analysis of V	Nater and Wastes, Marcl	h 1983.
	(2)	EPA 600/4-90/020.	Methods for the Determination of C	Organic Compounds in Dr	inking Water (I), July 1990.
	(3)	EPA 600/R-92/129.	Methods for the Determination of 0	Organic Compounds in Di	rinking Water (II), July 1990.
	(4)	EPA SW-846. Test	Methods for Evaluating Solid Wast	e.	
	(5)	Standard Methods f	or the Examination of Water and W	astewater.	
Com					
	nments		ed from raw data. Results may vary	slightly if the rounded up	
	(1) (2)		ase, solid & biological matrices for c	• •	
	(2)	-	Q" column indicates there is an ext		-
	(0)	associated with the		and damer and of the	

(4) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.

For a complete list of ACZ's Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

ACZ Project ID: L91136

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Volatile Organics by GC/MS

EPA 8260C/D

WG600356

DUP	Sample ID: L911	51-03DUP							yzed:	10/30	10/30/24 17:49		
Compound		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual		
1,1,1,2-TETRACHL	OROETHANE		U	U	ug/L				0	20	RA		
1,1,1-TRICHLORO	ETHANE		U	U	ug/L				0	20	RA		
1,1,2,2-TETRACHL	OROETHANE		U	U	ug/L				0	20	RA		
1,1,2-TRICHLORO	ETHANE		U	U	ug/L				0	20	RA		
1,1-DICHLOROETH	HANE		U	U	ug/L				0	20	RA		
1,1-DICHLOROETH	HENE		U	U	ug/L				0	20	RA		
1,2,3-TRICHLORO	PROPANE		U	U	ug/L				0	20	RA		
1,2-DIBROMO-3-Cl	HLOROPROPANE		U	U	ug/L				0	20	RA		
1,2-DIBROMOETH	ANE		U	U	ug/L				0	20	RA		
1,2-DICHLOROBE	NZENE		U	U	ug/L				0	20	RA		
1,2-DICHLOROETH	HANE		U	U	ug/L				0	20	RA		
1,2-DICHLOROPRO	OPANE		U	U	ug/L				0	20	RA		
1,3-DICHLOROBEN	NZENE		U	U	ug/L				0	20	RA		
1,4-DICHLOROBEN	NZENE		U	U	ug/L				0	20	RA		
2-BUTANONE			U	U	ug/L				0	20	RA		
2-HEXANONE			U	U	ug/L				0	20	RA		
4-METHYL-2-PENT	ANONE		U	U	ug/L				0	20	RA		
ACETONE			U	U	ug/L				0	20	RA		
ACRYLONITRILE			U	U	ug/L				0	20	RA		
BENZENE			38.5	40.3	ug/L				5	20			
BROMOCHLOROM	1ETHANE		U	U	ug/L				0	20	RA		
BROMODICHLORO	DMETHANE		U	U	ug/L				0	20	RA		
BROMOFORM			U	U	ug/L				0	20	RA		
BROMOMETHANE			U	U	ug/L				0	20	RA		
CARBON DISULFI	DE		U	U	ug/L				0	20	RA		
CARBON TETRAC	HLORIDE		U	U	ug/L				0	20	RA		
CHLOROBENZEN	=		U	U	ug/L				0	20	RA		
CHLOROETHANE			U	U	ug/L				0	20	RA		
CHLOROFORM			U	U	ug/L				0	20	RA		
CHLOROMETHAN	E		U	U	ug/L				0	20	RA		
CIS-1,2-DICHLORC	DETHENE		U	U	ug/L				0	20	RA		
CIS-1,3-DICHLORO	PROPENE		U	U	ug/L				0	20	RA		
DIBROMOCHLORO	DMETHANE		U	U	ug/L				0	20	RA		
DIBROMOMETHAN	NE		U	U	ug/L				0	20	RA		
DICHLORODIFLUC	ROMETHANE		U	U	ug/L				0	20	RA		
ETHYLBENZENE			1.67	1.65	ug/L				1	20	RA		
IODOMETHANE			U	U	ug/L				0	20	RA		
M P XYLENE			1.02	1.01	ug/L				1	20	RA		
METHYLENE CHL	ORIDE		U	U	ug/L				0	20	RA		
O XYLENE			.36	.34	ug/L				6	20	RA		
STYRENE			U	U	ug/L				0	20	RA		
TETRACHLOROET	THENE		U	U	ug/L				0	20	RA		
TOLUENE			.2	.2	ug/L				0	20	RA		
TRANS-1,2-DICHL			U	U	ug/L				0	20	RA		

Organic QC Summary

Twin Landfill Corporation

ACZ Project ID: L91136

TRANS-1,3-DICHLOROPROPENE	U	U	ug/L				0	20	RA
TRANS-1,4-DICHLORO-2-BUTENE	U	U	ug/L				0	20	RA
TRICHLOROETHENE	U	U	ug/L				0	20	RA
TRICHLOROFLUOROMETHANE	U	U	ug/L				0	20	RA
VINYL ACETATE	U	U	ug/L				0	20	RA
VINYL CHLORIDE	U	U	ug/L				0	20	RA
BROMOFLUOROBENZENE (surr)			%	100.1	70	130			
DIBROMOFLUOROMETHANE (surr)			%	100.8	70	130			
TOLUENE-D8 (surr)			%	97.0	70	130			

AS	AS Sample ID: L9119			PCN/SC	CN: V241	028-1-CC	VL	Anal	yzed:	10/30/24 21:37	
Compound	-	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,1,1,2-TETRACHLOROETH	ANE	10	U	10.57	ug/L	105.0	70	130			
1,1,1-TRICHLOROETHANE		10.1	U	12.67	ug/L	126.0	70	130			
1,1,2,2-TETRACHLOROETH	ANE	10	U	10.815	ug/L	108.0	70	130			
1,1,2-TRICHLOROETHANE		10	U	10.49	ug/L	105.0	70	130			
1,1-DICHLOROETHANE		10	U	11.68	ug/L	117.0	70	130			
1,1-DICHLOROETHENE		10	U	13.73	ug/L	137.0	70	130			М
1,2,3-TRICHLOROPROPANE	E	10	U	10.4	ug/L	104.0	70	130			
1,2-DIBROMO-3-CHLOROPR	OPANE	10	U	10.51	ug/L	106.0	70	130			
1,2-DIBROMOETHANE		10	U	10.309	ug/L	103.0	70	130			
1,2-DICHLOROBENZENE		10	U	10.5	ug/L	105.0	70	130			
1,2-DICHLOROETHANE		10	U	11.17	ug/L	111.0	70	130			
1,2-DICHLOROPROPANE		10	U	10.91	ug/L	109.0	70	130			
1,3-DICHLOROBENZENE		10		10.57	ug/L	106.0	70	130			
1,4-DICHLOROBENZENE		10.1	U	10.56	ug/L	105.0	70	130			
2-BUTANONE		20	U	22.3	ug/L	112.0	70	130			
2-HEXANONE		20	U	21.2	ug/L	106.0	70	130			
4-METHYL-2-PENTANONE		20	U	21.66	ug/L	108.0	70	130			
ACETONE		20	U	22.2	ug/L	111.0	70	130			
ACRYLONITRILE		10	U	11.215	ug/L	112.0	70	130			
BENZENE		10	U	11.69	ug/L	117.0	70	130			
BROMOCHLOROMETHANE		10	U	11.22	ug/L	112.0	70	130			
BROMODICHLOROMETHAN	E	10	U	10.84	ug/L	108.0	70	130			
BROMOFORM		10	U	10.42	ug/L	104.0	70	130			
BROMOMETHANE		9.9	U	11.96	ug/L	120.0	70	130			
CARBON DISULFIDE		10	U	12.58	ug/L	126.0	70	130			
CARBON TETRACHLORIDE		10	U	13.33	ug/L	133.0	70	130			М
CHLOROBENZENE		10	U	10.72	ug/L	107.0	70	130			
CHLOROETHANE		10.1	U	12.52	ug/L	124.0	70	130			
CHLOROFORM		10	U	11.28	ug/L	113.0	70	130			
CHLOROMETHANE		9.9	U	12.4	ug/L	125.0	70	130			
CIS-1,2-DICHLOROETHENE		10	U	11.43	ug/L	114.0	70	130			
CIS-1,3-DICHLOROPROPEN	E	10	U	10.81	ug/L	108.0	70	130			
DIBROMOCHLOROMETHAN	E	10	U	10.54	ug/L	105.0	70	130			
DIBROMOMETHANE		10	U	10.68	ug/L	107.0	70	130			
DICHLORODIFLUOROMETH	ANE	9.9		14.43	ug/L	145.0	70	130			М
ETHYLBENZENE		10	U	11.26	ug/L	113.0	70	130			
IODOMETHANE		10	U	11.75	ug/L	118.0	70	130			

Twin Landfill Corporation

ACZ Project ID: L91136

M P XYLENE	19.9	U	22.2	ug/L	111.0	70	130	
METHYLENE CHLORIDE	10	U	11	ug/L	110.0	70	130	
O XYLENE	9.9	U	10.95	ug/L	110.0	70	130	
STYRENE	10	U	11.08	ug/L	111.0	70	130	
TETRACHLOROETHENE	10	U	12.14	ug/L	121.0	71	130	
TOLUENE	10	U	11.33	ug/L	113.0	70	130	
TRANS-1,2-DICHLOROETHENE	10	U	12.22	ug/L	122.0	70	130	
TRANS-1,3-DICHLOROPROPENE	10	U	10.33	ug/L	103.0	70	130	
TRANS-1,4-DICHLORO-2-BUTENE	10	U	8.95	ug/L	90.0	70	130	
TRICHLOROETHENE	10	U	11.03	ug/L	110.0	71	130	
TRICHLOROFLUOROMETHANE	10.1	U	13.86	ug/L	137.0	70	130	M1
VINYL ACETATE	10.1	U	14.57	ug/L	145.0	70	130	M1
VINYL CHLORIDE	9.9	U	13.744	ug/L	139.0	70	130	M1
BROMOFLUOROBENZENE (surr)				%	100.5	70	130	
DIBROMOFLUOROMETHANE (surr)				%	101.6	70	130	
TOLUENE-D8 (surr)				%	97.2	70	130	

LCSW	Sample ID:	WG600356LCSW		PCN/S	CN: V241	1028-1-CC	VL	Analy	/zed:	10/30/	/24 11:42
Compound	-	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,1,1,2-TETRACHLOROET	HANE	10		10.05	ug/L	100.0	70	130			
1,1,1-TRICHLOROETHANE		10.1		11.03	ug/L	109.0	70	130			
1,1,2,2-TETRACHLOROET	HANE	10		10.132	ug/L	101.0	70	130			
1,1,2-TRICHLOROETHANE		10		10.25	ug/L	102.0	70	130			
1,1-DICHLOROETHANE		10		10.8	ug/L	108.0	70	130			
1,1-DICHLOROETHENE		10		11.2	ug/L	112.0	70	130			
1,2,3-TRICHLOROPROPAN	NE	10		10.04	ug/L	101.0	70	130			
1,2-DIBROMO-3-CHLOROF	PROPANE	10		9.84	ug/L	99.0	70	130			
1,2-DIBROMOETHANE		10		9.801	ug/L	98.0	70	130			
1,2-DICHLOROBENZENE		10		10.08	ug/L	101.0	70	130			
1,2-DICHLOROETHANE		10		10.49	ug/L	104.0	70	130			
1,2-DICHLOROPROPANE		10		10.18	ug/L	102.0	70	130			
1,3-DICHLOROBENZENE		10		10.12	ug/L	102.0	70	130			
1,4-DICHLOROBENZENE		10.1		10.09	ug/L	100.0	70	130			
2-BUTANONE		20		21.52	ug/L	108.0	70	130			
2-HEXANONE		20		20.67	ug/L	103.0	70	130			
4-METHYL-2-PENTANONE		20		21.02	ug/L	105.0	70	130			
ACETONE		20		22.2	ug/L	111.0	70	130			
ACRYLONITRILE		10		11.095	ug/L	111.0	70	130			
BENZENE		10		10.59	ug/L	106.0	70	130			
BROMOCHLOROMETHAN	E	10		10.64	ug/L	106.0	70	130			
BROMODICHLOROMETHA	NE	10		10.35	ug/L	104.0	70	130			
BROMOFORM		10		10.13	ug/L	101.0	70	130			
BROMOMETHANE		9.9		10.38	ug/L	105.0	70	130			
CARBON DISULFIDE		10		11.03	ug/L	110.0	70	130			
CARBON TETRACHLORID	E	10		10.99	ug/L	110.0	70	130			
CHLOROBENZENE		10		10.22	ug/L	102.0	70	130			
CHLOROETHANE		10.1		10.66	ug/L	106.0	70	130			
CHLOROFORM		10		10.6	ug/L	106.0	70	130			
CHLOROMETHANE		9.9		10.53	ug/L	106.0	70	130			

Twin Landfill Corporation

ACZ Project ID: L91136

CIS-1,2-DICHLOROETHENE	10	10.79	ug/L	108.0	70	130
CIS-1,3-DICHLOROPROPENE	10	10.42	ug/L	104.0	70	130
DIBROMOCHLOROMETHANE	10	9.98	ug/L	100.0	70	130
DIBROMOMETHANE	10	10.236	ug/L	102.0	70	130
DICHLORODIFLUOROMETHANE	9.9	10.77	ug/L	108.0	70	130
ETHYLBENZENE	10	10.24	ug/L	102.0	70	130
IODOMETHANE	10	10.68	ug/L	107.0	70	130
M P XYLENE	19.9	20.67	ug/L	104.0	70	130
METHYLENE CHLORIDE	10	10.39	ug/L	104.0	70	130
O XYLENE	9.9	10.2	ug/L	103.0	70	130
STYRENE	10	10.5	ug/L	105.0	70	130
TETRACHLOROETHENE	10	10.31	ug/L	103.0	71	130
TOLUENE	10	10.28	ug/L	103.0	70	130
TRANS-1,2-DICHLOROETHENE	10	10.77	ug/L	108.0	70	130
TRANS-1,3-DICHLOROPROPENE	10	9.93	ug/L	99.0	70	130
TRANS-1,4-DICHLORO-2-BUTENE	10	10.14	ug/L	102.0	70	130
TRICHLOROETHENE	10	10.32	ug/L	103.0	71	130
TRICHLOROFLUOROMETHANE	10.1	10.57	ug/L	104.0	70	130
VINYL ACETATE	10.1	12.64	ug/L	126.0	70	130
VINYL CHLORIDE	9.9	10.912	ug/L	110.0	70	130
BROMOFLUOROBENZENE (surr)			%	100.0	70	130
DIBROMOFLUOROMETHANE (surr)			%	102.6	70	130
TOLUENE-D8 (surr)			%	98.1	70	130

LCSWD	Sample ID	: WG600356LCSWD)	PCN/SCN: V241028-1-CCVL			Anal	yzed:	10/30/24 12:10		
Compound		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,1,1,2-TETRACHLO	DROETHANE	10		9.93	ug/L	99.0	70	130	1	20	
1,1,1-TRICHLOROE	THANE	10.1		10.52	ug/L	104.0	70	130	5	20	
1,1,2,2-TETRACHLO	DROETHANE	10		10.006	ug/L	100.0	70	130	1	20	
1,1,2-TRICHLOROE	THANE	10		9.99	ug/L	100.0	70	130	3	20	
1,1-DICHLOROETH	ANE	10		10.35	ug/L	104.0	70	130	4	20	
1,1-DICHLOROETH	ENE	10		10.59	ug/L	106.0	70	130	6	20	
1,2,3-TRICHLOROF	ROPANE	10		9.73	ug/L	97.0	70	130	3	20	
1,2-DIBROMO-3-CH	ILOROPROPANE	10		9.76	ug/L	98.0	70	130	1	20	
1,2-DIBROMOETHA	NE	10		9.681	ug/L	97.0	70	130	1	20	
1,2-DICHLOROBEN	ZENE	10		10	ug/L	100.0	70	130	1	20	
1,2-DICHLOROETH	ANE	10		10.45	ug/L	104.0	70	130	0	20	
1,2-DICHLOROPRO	PANE	10		10.12	ug/L	101.0	70	130	1	20	
1,3-DICHLOROBEN	ZENE	10		9.81	ug/L	99.0	70	130	3	20	
1,4-DICHLOROBEN	ZENE	10.1		9.76	ug/L	97.0	70	130	3	20	
2-BUTANONE		20		20.75	ug/L	104.0	70	130	4	20	
2-HEXANONE		20		20.72	ug/L	103.0	70	130	0	20	
4-METHYL-2-PENT	ANONE	20		20.44	ug/L	102.0	70	130	3	20	
ACETONE		20		20.3	ug/L	102.0	70	130	9	20	
ACRYLONITRILE		10		10.644	ug/L	106.0	70	130	4	20	
BENZENE		10		10.38	ug/L	104.0	70	130	2	20	
BROMOCHLOROM	ETHANE	10		10.39	ug/L	104.0	70	130	2	20	
BROMODICHLORO	METHANE	10		10.02	ug/L	100.0	70	130	3	20	
BROMOFORM		10		9.9	ug/L	99.0	70	130	2	20	

Twin Landfill Corporation

ACZ Project ID: L91136

mills are in % Rec.								
BROMOMETHANE	9.9	10.48	ug/L	106.0	70	130	1	20
CARBON DISULFIDE	10	10.39	ug/L	104.0	70	130	6	20
CARBON TETRACHLORIDE	10	10.86	ug/L	109.0	70	130	1	20
CHLOROBENZENE	10	9.85	ug/L	99.0	70	130	4	20
CHLOROETHANE	10.1	10.59	ug/L	105.0	70	130	1	20
CHLOROFORM	10	10.24	ug/L	103.0	70	130	3	20
CHLOROMETHANE	9.9	9.91	ug/L	100.0	70	130	6	20
CIS-1,2-DICHLOROETHENE	10	10.27	ug/L	103.0	70	130	5	20
CIS-1,3-DICHLOROPROPENE	10	10.36	ug/L	103.0	70	130	1	20
DIBROMOCHLOROMETHANE	10	9.89	ug/L	99.0	70	130	1	20
DIBROMOMETHANE	10	10.078	ug/L	101.0	70	130	2	20
DICHLORODIFLUOROMETHANE	9.9	10.26	ug/L	103.0	70	130	5	20
ETHYLBENZENE	10	9.98	ug/L	100.0	70	130	3	20
IODOMETHANE	10	10.5	ug/L	105.0	70	130	2	20
M P XYLENE	19.9	19.99	ug/L	100.0	70	130	3	20
METHYLENE CHLORIDE	10	10.06	ug/L	101.0	70	130	3	20
O XYLENE	9.9	10.12	ug/L	102.0	70	130	1	20
STYRENE	10	10.26	ug/L	103.0	70	130	2	20
TETRACHLOROETHENE	10	10.01	ug/L	100.0	70	130	3	20
TOLUENE	10	9.99	ug/L	100.0	70	130	3	20
TRANS-1,2-DICHLOROETHENE	10	10.31	ug/L	103.0	70	130	4	20
TRANS-1,3-DICHLOROPROPENE	10	9.76	ug/L	97.0	70	130	2	20
TRANS-1,4-DICHLORO-2-BUTENE	10	10.13	ug/L	101.0	70	130	0	20
TRICHLOROETHENE	10	9.98	ug/L	100.0	71	130	3	20
TRICHLOROFLUOROMETHANE	10.1	10.35	ug/L	102.0	70	130	2	20
VINYL ACETATE	10.1	12.09	ug/L	120.0	70	130	4	20
VINYL CHLORIDE	9.9	10.574	ug/L	107.0	70	130	3	20
BROMOFLUOROBENZENE (surr)			%	98.9	70	130		
DIBROMOFLUOROMETHANE (surr)			%	101.8	70	130		
TOLUENE-D8 (surr)			%	97.6	70	130		

PBW	Sample ID: W	G600356PBW						Anal	yzed:	10/30	/24 13:35
Compound		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,1,1,2-TETRACHL	OROETHANE			U	ug/L		-1	1			
1,1,1-TRICHLOROE	THANE			U	ug/L		-2	2			
1,1,2,2-TETRACHL	OROETHANE			U	ug/L		01	.01			
1,1,2-TRICHLOROE	THANE			U	ug/L		-1	1			
1,1-DICHLOROETH	IANE			U	ug/L		-1	1			
1,1-DICHLOROETH	IENE			U	ug/L		-1	1			
1,2,3-TRICHLOROF	PROPANE			U	ug/L		-1	1			
1,2-DIBROMO-3-CH	ILOROPROPANE			U	ug/L		-1	1			
1,2-DIBROMOETHA	ANE			U	ug/L		01	.01			
1,2-DICHLOROBEN	IZENE			U	ug/L		-1	1			
1,2-DICHLOROETH	IANE			U	ug/L		-1	1			
1,2-DICHLOROPRO	PANE			U	ug/L		-1	1			
1,3-DICHLOROBEN	IZENE			U	ug/L		-1	1			
1,4-DICHLOROBEN	IZENE			U	ug/L		-1	1			
2-BUTANONE				U	ug/L		-2	2			
2-HEXANONE				U	ug/L		-2	2			

Twin Landfill Corporation

ACZ Project ID: L91136

THE:	s are in % Rec.						
	4-METHYL-2-PENTANONE	U	ug/L		-2	2	
	ACETONE	U	ug/L		-10	10	
	ACRYLONITRILE	U	ug/L		05	.05	
	BENZENE	U	ug/L		-1	1	
	BROMOCHLOROMETHANE	U	ug/L		-1	1	
	BROMODICHLOROMETHANE	U	ug/L		-1	1	
	BROMOFORM	U	ug/L		-1	1	
	BROMOMETHANE	U	ug/L		-2	2	
	CARBON DISULFIDE	U	ug/L		-1	1	
	CARBON TETRACHLORIDE	U	ug/L		-1	1	
	CHLOROBENZENE	U	ug/L		-1	1	
	CHLOROETHANE	U	ug/L		-2	2	
	CHLOROFORM	U	ug/L		-1	1	
	CHLOROMETHANE	U	ug/L		-1	1	
	CIS-1,2-DICHLOROETHENE	U	ug/L		-1	1	
	CIS-1,3-DICHLOROPROPENE	U	ug/L		-1	1	
	DIBROMOCHLOROMETHANE	U	ug/L		-1	1	
	DIBROMOMETHANE	U	ug/L		01	.01	
	DICHLORODIFLUOROMETHANE	U	ug/L		-1	1	
	ETHYLBENZENE	U	ug/L		-1	1	
	IODOMETHANE	U	ug/L		-1	1	
	M P XYLENE	U	ug/L		-2	2	
	METHYLENE CHLORIDE	U	ug/L		-1	1	
	O XYLENE	U	ug/L		-1	1	
	STYRENE	U	ug/L		-1	1	
	TETRACHLOROETHENE	U	ug/L		-1	1	
	TOLUENE	U	ug/L		-1	1	
	TRANS-1,2-DICHLOROETHENE	U	ug/L		-1	1	
	TRANS-1,3-DICHLOROPROPENE	U	ug/L		-1	1	
	TRANS-1,4-DICHLORO-2-BUTENE	U	ug/L		-1	1	
	TRICHLOROETHENE	U	ug/L		-1	1	
	TRICHLOROFLUOROMETHANE	U	ug/L		-1	1	
	VINYL ACETATE	U	ug/L		-2	2	
	VINYL CHLORIDE	U	ug/L		05	.05	
	BROMOFLUOROBENZENE (surr)		%	99.7	70	130	
	DIBROMOFLUOROMETHANE (surr)		%	102.0	70	130	
	TOLUENE-D8 (surr)		%	96.3	70	130	

ACZ Project ID: L91136

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L91136-01	WG600356	1,1,1,2-Tetrachloroethane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1,1-Trichloroethane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1,2,2-Tetrachloroethane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1,2-Trichloroethane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1-Dichloroethane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1-Dichloroethene	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2,3-Trichloropropane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dibromo-3-chloropropane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dibromoethane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dichlorobenzene	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dichloroethane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dichloropropane	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,4-Dichlorobenzene	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		2-Butanone	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		2-Hexanone	EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

ACZ Project ID: L91136

ACZ ID WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
				sample is too low for accurate evaluation (< 10x MDL).
	4-Methyl-2-Pentanone	EPA 8260C/D	Q2	Sample received with head space.
	,	EPA 8260C/D		Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Acetone	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Acrylonitrile	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Benzene	EPA 8260C/D	Q2	Sample received with head space.
	Bromochloromethane	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Bromodichloromethane	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Bromoform	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Bromomethane	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Carbon Disulfide	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Carbon Tetrachloride	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
		EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Chlorobenzene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Chloroethane	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Chloroform	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Chloromethane	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	cis-1,2-Dichloroethene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	cis-1,3-Dichloropropene	EPA 8260C/D	Q2	Sample received with head space.

ACZ Project ID: L91136

ACZ ID WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Dibromochloromethane	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Dibromomethane	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Ethylbenzene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	lodomethane	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D		Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	m p Xylene	EPA 8260C/D		Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Methylene Chloride	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	o Xylene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Styrene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Tetrachloroethene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Toluene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	trans-1,2-Dichloroethene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	trans-1,3-Dichloropropene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	trans-1,4-Dichloro-2-butene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Trichloroethene	EPA 8260C/D	Q2	Sample received with head space.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Trichlorofluoromethane	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.

ACZ Project ID: L91136

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
			EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Vinyl Acetate	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 8260C/D	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
		Vinyl Chloride	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 8260C/D	Q2	Sample received with head space.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L91136-02	WG600356	1,1,1,2-Tetrachloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1,1-Trichloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1,2,2-Tetrachloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1,2-Trichloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1-Dichloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1-Dichloroethene	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2,3-Trichloropropane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dibromo-3-chloropropane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dibromoethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dichlorobenzene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dichloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dichloropropane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,4-Dichlorobenzene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		2-Butanone	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		2-Hexanone	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

ACZ Project ID: L91136

ACZ ID WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
				sample is too low for accurate evaluation (< 10x MDL).
	4-Methyl-2-Pentanone	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Acetone	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Acrylonitrile	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Bromochloromethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Bromodichloromethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Bromoform	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Bromomethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Carbon Disulfide	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Carbon Tetrachloride	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
		EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Chlorobenzene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Chloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Chloroform	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Chloromethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	cis-1,2-Dichloroethene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	cis-1,3-Dichloropropene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Dibromochloromethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Dibromomethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Ethylbenzene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	lodomethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	m p Xylene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	Methylene Chloride	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L91136

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
		o Xylene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Styrene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Tetrachloroethene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Toluene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		trans-1,2-Dichloroethene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		trans-1,3-Dichloropropene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		trans-1,4-Dichloro-2-butene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Trichloroethene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Trichlorofluoromethane	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Vinyl Acetate	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 8260C/D	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
		Vinyl Chloride	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L91136-03	WG600356	1,1,1,2-Tetrachloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1,1-Trichloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1,2,2-Tetrachloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1,2-Trichloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1-Dichloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,1-Dichloroethene	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2,3-Trichloropropane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		1,2-Dibromo-3-chloropropane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data

ACZ Project ID: L91136

ACZ ID WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
			validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
1,2-Dibromoethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
1,2-Dichlorobenzene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
1,2-Dichloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
1,2-Dichloropropane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
1,4-Dichlorobenzene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
2-Butanone	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
2-Hexanone	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
4-Methyl-2-Pentanone	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Acetone	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Acrylonitrile	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Bromochloromethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Bromodichloromethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Bromoform	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Bromomethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Carbon Disulfide	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Carbon Tetrachloride	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Chlorobenzene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Chloroethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Chloroform	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Chloromethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
cis-1,2-Dichloroethene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

ACZ Project ID: L91136

ACZ ID WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
			sample is too low for accurate evaluation (< 10x MDL).
cis-1,3-Dichloropropene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Dibromochloromethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Dibromomethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Ethylbenzene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
lodomethane	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
m p Xylene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Methylene Chloride	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
o Xylene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Styrene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Tetrachloroethene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Toluene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
trans-1,2-Dichloroethene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
trans-1,3-Dichloropropene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
trans-1,4-Dichloro-2-butene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Trichloroethene	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Trichlorofluoromethane	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
Vinyl Acetate	EPA 8260C/D	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	EPA 8260C/D	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
Vinyl Chloride	EPA 8260C/D		Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	EPA 8260C/D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

Twin Landfill Corporation

ACZ Project ID: L91136

Metals Analysis

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Silver, total

EPA 6020B

ALIZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493			imple eceipt	
Twin Landfill Corporation AC	Z Proje	ect ID:		L91136
	ate Rece	eived: 10)/24/202	4 13:58
	Receive	•		
	Date Pr	inted:	10/2	24/2024
Receipt Verification		YES	NO	NA
1) Is a foreign soil permit included for applicable samples?			NO	X
2) Is the Chain of Custody form or other directive shipping papers present?		Х		
3) Does this project require special handling procedures such as CLP protocol?			Х	
4) Are any samples NRC licensable material?				Х
5) If samples are received past hold time, proceed with requested short hold time analys	es?	Х		
6) Is the Chain of Custody form complete and accurate?		X		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the same	ples?		Х	
Samples/Containers				
		YES	NO	NA
8) Are all containers intact and with no leaks?		Х		
9) Are all labels on containers and are they intact and legible?		Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Tir	ne?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1		Х		
12) Is there sufficient sample volume to perform all requested work?		Х		
13) Is the custody seal intact on all containers?				Х
14) Are samples that require zero headspace acceptable?		Х		
15) Are all sample containers appropriate for analytical requirements?		Х		
16) Is there an Hg-1631 trip blank present?				Х
17) Is there a VOA trip blank present?		Х		
18) Were all samples received within hold time?		Х		

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
NA43307	-0.6	<=6.0	15	N/A

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

REPAD LPII 2012-03

NA indicates Not Applicable

Twin Landfill Corporation	oration
---------------------------	---------

ACZ Project ID: L91136 Date Received: 10/24/2024 13:58 Received By: Date Printed: 10/24/2024

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

LABORATORIES	Environmental Testing	Steamboat Spi (970) 879-6590	rings, CO 8 I	30487 /	9/13	36		C	HAI		00.	510	DY	
Report to:														
Name: DAV		5-4			Addr	ess: 🖌	Lab	50	21	r 2	05	_		1
Company: 🖵 🗸	in Bri	ro]		STC.	en a	607				-		1
E-mail: Dicea	+:-90	April vus	Te.co.	20-	Telep	phone:	97	6	879	6	981	5		1
Copy of Report t														
Name: Rebe	ica Li	deman	_		E	ан. 19			\mathcal{O}					
Company: Ja	rdon			1				>	517) <u>ar</u>	<u> </u>	n eng	<u>-:-</u> @	5-4
Invoice to:						none.	<u></u>	<u>></u>	5//	8.	<u> </u>			
	an 111		_				1 /						_	
	OINC			-	Addre	ess: d	6	50	<u>L</u> K		<u>25</u>			4
Company: Tr E-mail: Ter		<u> </u>		-	<u> </u>	SFc1	<u>z~/</u>	7000	h 7-4	10				
		W APCX	un se	50 ~~	Telep	phone:	<u>97</u> e	-81	90	548	5			1
Copy of Invoice t	io:													
Name:					Addre	ess:						_		
Company:		· _ · ·									_]
E-mail:				J		hone:								
f sample(s) receive malvsis before evr	ed past holding t	time (HT), or if in	sufficient	HT rema	ins to	comple	te				YES	0]
Inalysis before exp "NO" then ACZ will contact o	ilent for further instructio	-4. proceed with n. If neither "YE8" nor "N	requested	Short H	Tanah medwith t	yses? he request~	d analyses	even if Lit	is exniced -	nd date w ^a	NO]	
ve samples for SD	WA Compliance	Monitoring?			Yes			No			o quante			
	***		norted to l	POL for	Colora	do.		-						
yes, please includ														
yes, please includ			ite Informa	tion	State_	6		Zip co	nde <u>&-</u>	487	Time 2	Zone 🖌	ترساحه	55
i yes, please includ iampler's Name: <u>/</u>	Jan / Kyer		ite Informa		ielty and v	alidity of this	s sample. I	understand	d that intentio	onally mista	Time a the f	Zone	Color Seation or	erin
i yes, please includ ampler's Name: <u>/</u> Sampler's Signatu PROJECT INFOR	re: 250 0 MATION	Sampler's Si	ite Informa 'i attect to tempering	tion the authent	ielty and v	alidity of this way, is con	s sample. I Isidered fra	understand ud and pun	d that intentio	onally miela tate Law.	being the t	time/date/ic	Colory J	1.5×
i yes, please includ ampler's Name: <u>/</u> Sampler's Signatu PROJECT INFOR	re: 250 0 MATION	Sampler's Si	ite Informa 'i attect to tempering	tion the authent	icity and v mple in any	alidity of this way, is con	s sample. I Isidered fra	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic	Cation or	55
iyes, please includ ampler's Name: <u>/</u> Sampler's Signatu ROJECT INFOR Nuote #: / C &	re: 250 0 MATION	Sampler's Si	ite Informa 'i attect to tempering	tion the authent	icity and v mple in any	alidity of this way, is con	s sample. I Isidered fra	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic	boation or	e5~
fyes, please includ Sampler's Name: Sampler's Signatu ROJECT INFOR Quote #: LECC O#:	re: 250 - MATION CMASE -	Waster no	ite Informa 'i attect to tempering	tion the authent	icity and v mple in any	alidity of this way, is con ANAL	s cample. I isidered fra YSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic	Soution or	5×
f yes, please includ Sampler's Name: Sampler's Signatu PROJECT INFOR Quote #: Cuote #: Check box if samples	David Jeyer re: 255 - MATION CUA32 - ompliance testing	Waster wa	ite Informa 'i attect to tempering	tion the authent	Containers	alidity of this way, is con	s sample. I Isidered fra	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic	soution or	
f yes, please includ Sampler's Name: Sampler's Signatu PROJECT INFOR Quote #: Cuote	Davy / Jeyer re: 250 MATION CUA3C CUA3C 	Waster wa	ite Informa 'l attest is tampering	tion the authent	icity and v mple in any	alidity of this way, is con ANAL	s cample. I isidered fra YSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic	vention or	47
f yes, please includ sampler's Name: Sampler's Signatu PROJECT INFOR Quote #: Cauote #	Davy / Jeyer re: 250 MATION CUA3C CUA3C 	Ensed material?	ite Informa 'l attest is tempering	tion the authent with the sai	# of Containers	alidity of this way, is con ANAL	s cample. I isidered fra YSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic	A dear	e7~
i yes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR Luote #: C#: eporting state for co heck box if samples SAMPLE IDEN	Davy / Jeyer re: 250 MATION CUA3C CUA3C 	Magre Ma ensed material? DATE:TI	ite Informa ¹ attest is tempering A-2-2- MIE MIE	tion the authent with the sai	of Containers	Allidity of this way, is con ANAL	s sample. I skilered fra VSES RE / /	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic	Southon or	
iyes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR uote #: C#: eporting state for co heck box if samples SAMPLE IDEN Mal	MATION CHASE - pompliance testing is include NRC lice TIFICATION	Ensed material?	ite Informa 'l attest is tempering	tion the authent with the sai	# of Containers	Allidity of this way, is con ANAL	s sample. I Istidared fran VSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic	Seation or	r2~
yes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR uote #: C#: eporting state for co heck box if samples SAMPLE IDEN Mal	MATION CHASE - pompliance testing is include NRC lice TIFICATION	Magre Ma ensed material? DATE:TI	ite Informa ¹ attest is tempering A-2-2- MIE MIE	tion the authent with the sai	# of Containers	Allidity of this way, is con ANAL	s sample. I Istidared fran VSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic		
iyes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR uote #: C#: eporting state for co heck box if samples SAMPLE IDEN Mal	MATION CHASE - pompliance testing is include NRC lice TIFICATION	Magre Ma ensed material? DATE:TI	ite Informa ¹ attest is tempering A-2-2- MIE MIE	tion the authent with the sai	# of Containers	Allidity of this way, is con ANAL	s sample. I Istidared fran VSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic	Southon or	
yes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR uote #: C#: eporting state for co heck box if samples SAMPLE IDEN Mal	MATION CHASE - pompliance testing is include NRC lice TIFICATION	Magre Ma ensed material? DATE:TI	ite Informa ¹ attest is tempering A-2-2- MIE MIE	tion the authent with the sai	# of Containers	Allidity of this way, is con ANAL	s sample. I Istidared fran VSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic		e7~
yes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR uote #: C#: eporting state for co heck box if samples SAMPLE IDEN Man	MATION CHASE - pompliance testing is include NRC lice TIFICATION	Magre Ma ensed material? DATE:TI	ite Informa ¹ attest is tempering A-2-2- MIE MIE	tion the authent with the sai	# of Containers	Allidity of this way, is con ANAL	s sample. I Istidared fran VSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic		.
yes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR uote #: C#: eporting state for co heck box if samples SAMPLE IDEN Man	MATION CHASE - pompliance testing is include NRC lice TIFICATION	Magre Ma ensed material? DATE:TI	ite Informa ¹ attest is tempering A-2-2- MIE MIE	tion the authent with the sai	# of Containers	Allidity of this way, is con ANAL	s sample. I Istidared fran VSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic		e5~
yes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR uote #: C#: eporting state for co heck box if samples SAMPLE IDEN Mal	MATION CHASE - pompliance testing is include NRC lice TIFICATION	Magre Ma ensed material? DATE:TI	ite Informa ¹ attest is tempering A-2-2- MIE MIE	tion the authent with the sai	# of Containers	Allidity of this way, is con ANAL	s sample. I Istidared fran VSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic		4 5
i yes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR Auote #: C#: C#: C#: C#: C#: C#: C#: C#: C#: C#:	MATION CHASE - pompliance testing is include NRC lice TIFICATION	Magre Ma ensed material? DATE:TI	ite Informa ¹ attest is tempering A-2-2- MIE MIE	tion the authent with the sai	# of Containers	Allidity of this way, is con ANAL	s sample. I Istidared fran VSES RE	understand ud and pun	l that intention whatle by St	onally miela tate Law.	being the t	time/date/ic		.
i yes, please includ sampler's Name: Sampler's Signatu ROJECT INFOR Auote #: C#: Beporting state for co theck box if samples SAMPLE IDEN Mal TTANK	Part / kyen re: 255 MATION Culase	Bampler's Si Wafre Ma ensed material? DATE:TI Io/J//J/ Io/J/J/J	ME 9:55 9:30	tion the authent with the sate Matrix	L Containers	alidity of this way, is con ANAL	s sample. I stidered fra VSES RE I N V V V	understand ud and puni CUFS ? E	I that intentive letable by St O /attach	inte Law.				e5~
iyes, please includ ampler's Name: Sampler's Signatu ROJECT INFOR tuote #: C#: eporting state for co heck box if samples SAMPLE IDEN Mal THANK	Part / kyen re: 255 MATION Culase	Magre Ma ensed material? DATE:TI	ME 9:55 9:30	tion the authent with the sate Matrix	L Containers	alidity of this way, is con ANAL	s sample. I stidered fra VSES RE I N V V V	understand ud and puni CUFS ? E	I that intentive letable by St O /attach	inte Law.				4 5

sto
S
20
o

Appendix E Weekly Mod 1 Leachate Sump Inspection Forms

WEEKLY MODULE 1 LEACHATE SUMP INSPECTION FORM

INSPECTED BY: David Keating

MILNER LANDFILL

DATES COMPLETED: July 2024

WEEKLY MODULE 1 LEACHATE SUMP INSPECTION FORM

	· · ·	SUM	IP INSPECTION		
DATE/INITIALS	LEACHATE LEVEL (FT) BEFORE PUMPING	LEACHATE LEVEL (FT) AFTER PUMPING	DEFICIENCY	REPAIR	COMMENTS
7/1/24 <i>.</i> ンペ	2"	N/A	None	None	
7/8/24 / <i>少</i> 人	0.5"	N/A	None	None	
7/15/24 D/<	2"	N/A	None	None	
7/19/24 少々	1"	N/A	None	None	
7/22/24	1.5"	N/A	None	None	
7/29/24 DK	1"	N/A	None	None	

INSPECTORS SIGNATURE

WEEKLY MODULE 1 LEACHATE SUMP INSPECTION FORM

INSPECTED BY: David Keating

DATES COMPLETED: August 2024

MILNER LANDFILL

WEEKLY MODULE 1 LEACHATE SUMP INSPECTION FORM

		SUM	IP INSPECTION		
DATE/INITIALS	LEACHATE LEVEL (FT) BEFORE PUMPING	LEACHATE LEVEL (FT) AFTER PUMPING	DEFICIENCY	REPAIR	COMMENTS
8/5/24 - 	0.5"	N/A	None	None	
8/12/24 * DK	0.25"	N/A	None	None	
8/19/24 	0.25"	N/A	None	None	
8/23/24	1.0"	N/A	None	None	
8/27/24	5.0"	N/A	None	None	

INSPECTORS SIGNATURE

Dal his DATE

8/27/24

WEEKLY MODULE 1 LEACHATE SUMP INSPECTION FORM

INSPECTED BY: David Keating

DATES COMPLETED September 2024

MILNER LANDFILL

WEEKLY MODULE 1 LEACHATE SUMP INSPECTION FORM

		SUM	P INSPECTION		
DATE/INITIALS	LEACHATE LEVEL (FT) BEFORE PUMPING	LEACHATE LEVEL (FT) AFTER PUMPING	DEFICIENCY	REPAIR	COMMENTS
9/3/24	1"	N/A	None	None	
9/9/24 ルバ	0.5"	N/A	None	None	
9/16/24 ひた	1"	N/A	None	None	
9/23/24 DK	1.5"	N/A	None	None	
9/30/24 D/<	3"	N/A	None	None	
SPECTORS SIGNATL	JRE JE	DAT	re 9/30	2/21	د. ا ^{یستر} ین اور

9/30/21

WEEKLY MODULE 1/PHASE 2 LEACHATE SUMP INSPECTION FORM

INSPECTED BY: David Keating

MILNER LANDFILL

DATES COMPLETED: October 2024

WEEKLY MODULE 1 LEACHATE SUMP INSPECTION FORM

SUMP INSPECTION								
DATE/INITIALS	LEACHATE LEVEL (FT) BEFORE PUMPING	LEACHATE LEVEL (FT) AFTER PUMPING	DEFICIENCY	REPAIR	COMMENTS			
10/18/24 DK	2"	NA	None	None				
10/14/24 DK	Dry	NA	None	None				
10/18/24 DK	1"	NA	None	None				
10/21/24 DK	0.25"	NA	None	None				
10/24/24 DK	2"	NA	None	None				
10/28/24 DK	2"	NA	None	None				

DATE

INSPECTORS SIGNATURE

Ita/ man

10/28/24

Twin Enviro WEEKLY MODULE 1/PHASE 2 LEACHATE SUMP INSPECTION FORM

INSPECTED BY: David Keating

MILNER LANDFILL

DATES COMPLETED: November 2024

WEEKLY MODULE 1 LEACHATE SUMP INSPECTION FORM

SUMP INSPECTION							
DATE/INITIALS	LEACHATE LEVEL (FT) BEFORE PUMPING	LEACHATE LEVEL (FT) AFTER PUMPING	DEFICIENCY	REPAIR	COMMENTS		
11/4/2024 DK	9 inches	N/A	None	None			
11/12/24 DK	4 inches	N/A	None	None			
11/22/24 DK	1 inch	N/A	None	None			
11/25/24 DK	1.5 inches	N/A	None	None			
		N/A	None	None			
		N/A	None	None			

1 to/ how

11/25/2024 DATE

INSPECTORS SIGNATURE

WEEKLY MODULE 1/PHASE 2 LEACHATE SUMP INSPECTION FORM

INSPECTED BY: David Keating

MILNER LANDFILL

DATES COMPLETED: 12/6-12/27 2024

WEEKLY MODULE 1 LEACHATE SUMP INSPECTION FORM

			IP INSPECTION		
DATE/INITIALS	LEACHATE LEVEL (FT) BEFORE PUMPING	LEACHATE LEVEL (FT) AFTER PUMPING	DEFICIENCY	REPAIR	COMMENTS
DK 12/6/24	0.25"	na	none	none	
DK 12/13/24	dry	na	none	none	
DK 12/17/24	0.25"	na	none	none	
DK 12/20/24	2"	na	none	none	
DK 12/27/24	4.5"	na	none	none	

INSPECTORS SIGNATURE

DATE

12/27/24

Appendix F Leachate Pond Measurement Logs

JLIX - Dec.

leuchate pond

3' " 715123 1' 8'' 7/10/23 2'1" 7/17/23 y " 2' 7/31/23 2' 8" 8121/23 2'6" 8/28/23 2'6" 915/23 3'10" 9/18/23 L' 6" 10/24/23 2' 9" 10/27/23 2' 3" 10/30/23 2 11/3/23 ノ'ノ" 11/6/23 3'6" 11/10/13 11/13/23 3'6" 31" 11/20/23 3 31 11/27/23 3'4" 12/1/23 and the second 12/1/23 8 '' 12/8/23 2'7" 12/1/23 2'10" 12/18/23 12/22/23 1 31 12/23

ALL measurements are From top tope down

	· .		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		· .
			·
	·		• • • • • • • • • • • • • • • • • • • •
	······ ,	· · · · · · · · · · · · ·	
		·····	
	<u>.</u>		
	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	
	· · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	
	· ····· ···· · · ·		
·			