

APPLICATION

Title V Operating Permit Renewal

Twin Landfill Corporation - Milner Landfill

Submitted to:

Colorado Department of Public Health & Environment

4300 Cherry Creek Drive South Denver, CO 80246-1530

Submitted by:

Golder Associates Inc.

1751 West County Road B, Suite 105, Roseville, Minnesota, USA 55113

+1 651 697-9737

19136352

October 1, 2020

Distribution List

Luke Schneider, Milner Landfill (electronic copy)

Table of Contents

1.0	INTRO	INTRODUCTION4				
2.0	PROCESS DESCRIPTION AND REQUESTED CHANGES					
	2.1	E001 – Landfill (fugitive PM)	4			
	2.2	E002 – Landfill (landfill gas)	5			
	2.3	E003 – Solidification Basin	6			
	2.4	Gasoline Storage Tank (500-gal)	6			
	2.5	Composting	6			
	2.6	Insignificant Activities	6			
3.0	RULE	REVIEW AND NEWLY APPLICABLE REQUIREMENTS	7			
4.0	APPLICATION AND PERMIT SHEILD8					
5.0	APPLICATION FORMS9					
6.0	ENVIRONMETNAL PLANS					
7.0	CLOS	CLOSING				

TABLES

Table 1: Storage Tank Emission Calculation

FIGURES

Figure 1: Site Location Figure 2: Site Layout Figure 3: Process Flow Diagram

APPENDICES

APPENDIX A LandGEM Model Results

APPENDIX B Operating Permit Application Forms

APPENDIX C Existing APENs

ABBREVIATIONS

CO = carbon monoxide HAP = hazardous air pollutant NANSR = nonattainment new source review NOx = nitrogen oxides NESHAP = National Emission Standard for Hazardous Air Pollutants (promulgated under 40 CFR Part 63) NMOC = non-methane organic compound NSPS = New Source Performance Standard (promulgated under 40 CFR Part 60) NSR = new source review Part 70 = 40 CFR Part 70 (the terms Title V and Part 70 permit refer to a federal air operating permit) PM = particulate matter PM10 = PM less than 10 microns PM2.5 = PM less than 2.5 microns PSD = prevention of significant deterioration (promulgated under 40 CFR Part 52.21) SO2 = sulfur dioxide Title V = Title V of the Clean Air Act (the terms Title V and Part 70 permit refer to a federal air operating permit) USEPA = United States Environmental Protection Agency

VOC = volatile organic compound

1.0 INTRODUCTION

Twin Landfill Corporation owns and operates the Milner Landfill (the "Landfill") in Routt County, located at 20650 RCR 205, approximately 1.2 miles southwest of Milner, Colorado. The Landfill operates air emission units under Air Operating Permit 09OPRO329 (Permit) issued by the Colorado Department of Public Health & Environment (CDPHE) Air Pollution Control Division (APCD). The Permit was issued on August 1, 2016 and expires August 1, 2021. The purpose of this document is to submit the Permit renewal application.

2.0 PROCESS DESCRIPTION AND REQUESTED CHANGES

The Permit currently authorizes air emissions from:

- E001 Landfill (haul roads)
- E002 Landfill (landfill gas)
- E003 Solidification Basin
- Gasoline Storage Tank (500-gal)
- Several insignificant activities
- Composting (exempt)

A site location map is included in Figure 1. A site layout map is included in Figure 2. A process flow diagram is included in Figure 3. Sections 2.1 through 2.6 describe each emission activity and identify any changes requested in this application.

The Landfill is a major source under 40 CFR Part 70 because NMOC/VOC permitted emissions exceed 100 tpy; New Source Performance Standard Subpart WWW also requires the Landfill to hold a Title V operating permit. The Landfill is a minor source under Part 70 for Hazardous Air Pollutants. The Landfill is not subject to Prevention of Significant Deterioration because permitted emissions do not exceed the major source thresholds. The Landfill is not located in a geographical area that is classified as a nonattainment area so nonattainment new source review is not applicable. Dispersion modeling has not previously been conducted for this facility and is not required by this permitting action.

2.1 E001 – Landfill (fugitive PM)

Fugitive dust is defined as particulate matter emissions which may become entrained in the atmosphere due to mechanical or wind forces such as; transfer of material; disturbed surface areas; or similar commercial or industrial activities, and which are not ducted through exhaust systems. Fugitive emissions of particulate matter (PM), PM less than 10 microns (PM10), and PM less than 2.5 microns (PM2.5) are emitted from soil/material handling (excavation, cover material) and truck traffic on unpaved roads.

Because landfills are not one of the 28-named source categories, fugitive emissions are not included in the emission totals to determine if a source is a major source under Part 70 but they have been quantified in the current APEN (submitted December 14, 2015). Fugitive emissions from the movement of haul trucks on unpaved roads and heavy equipment on unpaved surfaces were estimated based on the methodology in United States Environmental Protection Agency (USEPA) document Compilation of Air Emissions Factors (AP-42) Section 13.2.2 Unpaved Roads in the current APEN.

The Permit requires control of fugitive dust using the following methods:

- Watering haul roads as needed
- Sweeping/scraping of paved roads, scales, and parking areas
- Watering during land clearing/construction activities

No changes are being requested to the fugitive PM emissions or control techniques in this renewal application.

2.2 E002 – Landfill (landfill gas)

The Landfill accepts municipal solid waste (MSW), construction and demolition (C&D) waste, and petroleum contaminated soil (PCS). Decomposition of biodegradable waste in landfills generates landfill gas (LFG). The Landfill does not have a landfill gas collection system or flare. Non-methane organic compounds (NMOC), volatile organic compounds (VOCs), hazardous air pollutants (HAPs), and carbon monoxide (CO) are emitted as fugitive emissions. Landfill gas generation is estimated using the U.S. EPA's LandGEM model (version 3.02). PCS does not significantly degrade into LFG; however, CDPHE air permitting guidance memo 12-01 establishes that PCS can emit NMOC. The emission calculations for the purposes of permit limits uses the inputs established in guidance memo 12-01 for "considerable quantities of PCS" and are listed below and the LANDGEM model report is presented in Appendix A.

- Historic waste acceptance data is provided by Landfill and includes PCS and future waste acceptance equal to Permit limit of 175,000 short tons per year
- Methane generation rate constant "k" of 0.02 is used which is appropriate for an "arid" geographic area and consistent with guidance memo 12-01 and with the Permit
- Potential methane generation capacity "Lo" of 100 m³/Mg is used which is consistent with guidance memo 12-01 and with the Permit
- Default methane content of 50% by volume
- Tier 1 NMOC concentration of 2,420 ppmv as hexane is used as a user-specific value and is consistent with co-disposal situations described in memo 12-01 and is consistent with the Permit

The LandGEM model inputs described above are not necessarily acceptable to show compliance with NSPS.

Based on a CDPHE-approved VOC emission factor equal to 85% of NMOC and the output of the LandGEM model, the following maximum emissions are estimated in the year 2033:

- NMOC = 119.2 short tons/yr
- VOC = 101.3 short tons/yr
- CO = 2.2 short tons/yr

No operational changes are being requested to the landfill. We suggest that the existing Permit limits of 107.2 tpy VOC, 8.0 tpy of any single HAP, 20 tpy of total HAP, and 2.4 tpy of CO be retained. No changes are being requested to the voluntary waste acceptance limit of 175,000 short tons per year. This activity is associated with an APEN submitted December 14, 2015.

2.3 E003 – Solidification Basin

The Milner Landfill previously operated a solidification basin which was discontinued in October 2019. The APEN associated with the solidification basin was cancelled in November 2019. We request that the solidification basin (E003) be removed from the Permit.

2.4 Gasoline Storage Tank (500-gal)

The 500-gal gasoline tank is used to fuel mobile sources at the Landfill; no changes are requested to the gasoline storage tank. This source would ordinarily be considered an insignificant activity but because it is subject to certain federal rules, it is included in the Permit. This source does not require an APEN.

2.5 Composting

The Landfill accepts wood and other organic material, grinds/screens the material, and places the ground material on a compost pile. The compost pile emits VOC but qualifies for a construction and operation permit exemption (see Exemption Number 18RO0850.XP issued March 20, 2019). Because it is exempt, it is not included in the Permit but does require an APEN (latest APEN is dated November 30, 2017). No changes are requested to the compost pile.

2.6 Insignificant Activities

Some of the previously listed insignificant activities in the Permit have been removed and/or replaced with other insignificant activities in addition to new insignificant activities added. The following previously listed insignificant activities have been removed:

- One of the 110-gallon AST's designated to store antifreeze was removed.
- The 305 hp diesel portable engine was replaced with a 603 hp engine.
- 400,000 BTU/hr waste oil burner was removed.

Insignificant activities added as new or replacement units include:

- 1,000 gallon used oil AST (new source, Colorado Regulation No. 3, Part C, Section II.E.3.aaa)
- 1,000 gallon methanol AST (new source, Colorado Regulation No. 3, Part C, Section II.E.3.a and Section II.E.3.b); because this unit is exempt on an emissions basis, emission calculations have been provided in Table 1 to show that emissions are less than the 250 lb/yr insignificance threshold for methanol.
- 2,000 gallon on-road diesel AST (Colorado Regulation No. 3, Part C, Section II.E.3.fff)
- 630 HP (new) and 54 HP (existing) diesel engines used during composting. These engines are considered non-road engines that do not fall under Regulation No. 3 Stationary Source requirements. Non-road engines are not regulated under the stationary source permitting program and, therefore, owners or operators of non-road engines are not required to submit an APEN or obtain an air permit from the Division at this time. (modified source)
- One 0.299 MMBtu/hr propane boiler located in the New Shop used for comfort heat (Colorado Regulation No. 3, Part C, Section II.E.3.ggg)

- One 0.324 MMBtu/hr propane boiler located in the Old Shop used for comfort heat (Colorado Regulation No. 3, Part C, Section II.E.3.ggg)
- Two propane storage tanks with a capacity of 500 gallons each located at the Old Shop and New Shop (Colorado Regulation No. 3, Part C, Section II.E.3.zz)

The following insignificant emission units were listed in the Permit and remain at the Landfill unchanged:

- Three 110 gallon ASTs transmission oil, hydraulic oil, motor oil (Colorado Regulation No. 3, Part C, Section II.E.3.aaa)
- 2,000 gallon off-road diesel AST (Colorado Regulation No. 3, Part C, Section II.E.3.fff)
- Composting piles, however, all odor requirements of Colorado Regulation No. 2 must be met. (Colorado Regulation No. 3, Part C, Section II.E.3.rrr)
- Leachate holding pond activities, surface water storage impoundment of non-potable water, and storm water evaporation ponds. (Colorado Regulation No. 3, Part C, Section II.E.3.yyy)
- Asbestos containing materials are accepted at the landfill. (Colorado Regulation No. 3, Part C, Section II.E.2)

3.0 RULE REVIEW AND NEWLY APPLICABLE REQUIREMENTS

The following New Source Performance Standard (NSPS) and National Emission Standards for Hazardous Air Pollutants (NESHAP) rules were reviewed for applicability.

NSPS Subpart WWW [40 CFR Part 60 Subpart WWW]

The Landfill is subject to NSPS Subpart WWW because construction on newly permitted airspace commenced on or after May 30, 1991 and no newly permitted airspace has been constructed after July 17, 2014. A design capacity report has previously been submitted documenting that design capacity exceeds 2.5 million megagrams and 2.5 million cubic meters. The permitted design capacity of the Landfill is 4,875,104 short tons which is unchanged from previous applications. Historically, Tier 2 NMOC tests have been conducted to demonstrate that a gas collection and control system is not required.

Emission Guideline Subpart Cf [40 CFR Part 60 Subpart Cf]

EPA promulgated Emission Guideline Subpart Cf concurrently with NSPS Subpart XXX. Subpart Cf requirements do not become effective upon promulgation, they become effective after EPA approves a state control plan implementing the rules or, in cases where the state does not submit a plan, approval of a federal control plan. NSPS Subpart WWW will cease to apply after Subpart Cf becomes applicable. CDPHE submitted a state control plan to EPA for approval but the plan has not yet been approved. The state control plan is not available for review but it is our understanding that it adopts the requirements stated in subpart Cf as written. If this is the case, then upon approval of the state control plan, this rule will require the following actions:

- A design capacity report is due 90 days after control plan approval
- A NMOC generation report is due 90 days after control plan approval
- Annual NMOC generation reports will be required. These are the same reports required under NSPS Subpart WWW but will compare to a 34 Mg/yr threshold rather than the existing 50 Mg/yr threshold. The

Landfill anticipates NMOC emissions with Tier 2 testing to be less than 34 Mg/yr so a gas collection and control system should not be required under Subpart Cf and additional monitoring and record keeping requirements will not be required.

NSPS Subpart XXX [40 CFR Part 60 Subpart XXX]

The Landfill is not subject to NSPS XXX because there have been no newly permitted airspace expansions where construction commenced after July 17, 2014. If such construction occurs in the future, Subpart Cf will cease to apply and Subpart XXX will apply.

NSPS Subpart IIII [40 CFR Part 60 Subpart IIII]

NSPS Subpart IIII does not apply to the two reciprocating engines associated with the compost operation because they are considered non-road engines and are periodically moved.

NESHAP Subpart AAAA [40 CFR Part 63 Subpart AAAA]

The Landfill is not subject to NESHAP AAAA because NMOC emissions do not exceed 50 Mg/yr based on Tier 2 NMOC testing.

NESHAP Subpart ZZZZ [40 CFR Part 63 Subpart ZZZZ]

NESHAP Subpart ZZZZ does not apply to the two reciprocating engines associated with the compost operation because they are considered non-road engines and are periodically moved.

NESHAP Subpart CCCCCC [40 CFR Part 63 Subpart CCCCCC]

The 250-gal gasoline tank is subject to NESHAP CCCCCC. Applicability remains the same as currently permitted.

4.0 APPLICATION AND PERMIT SHEILD

There are two types of shields, an application shield, and a permit shield. An application shield means that if a permittee submits a timely and administratively complete application prior to the due date, the permittee can continue operating under the expired permit if the renewal is not issued by the expiration date. A permit shield both protects a permittee when an applicable requirement is incorrectly addressed in the operating permit and when an applicable requirement is deemed to be not applicable in the operating permit.

Application Shield

The Permit expires August 1, 2021. CDPHE regulations require that an operating permit renewal be submitted 12 months prior to expiration which was August 1, 2020. The U.S. EPA considers a timely application to be submitted *"at least 6 months prior to the date of expiration or such longer time as may be approved by the Administrator"*. From discussions with CDPHE, submission of this application past the 12-month deadline means that an application shield cannot be offered even though EPA allows a shorter due date. For this reason, we request that CDPHE prioritize this application as much as practical with a goal to issue the renewal prior to the expiration date.

Permit Shield

No specific non-applicable rules are being discussed as part of the permit shield.

5.0 APPLICATION FORMS

Golder reviewed CDPHE guidance to determine which application forms are required. The operating permit forms are listed below with a description of if they are being included with this application.

- Form OP-50 (application) is required for all renewal applications and is included. Also, this form requires that existing APENs be submitted; existing APENs are included in Appendix C.
- Form OP-100 (facility identification) is required for all renewal applications and is included.
- Form OP-101 (site description) is being submitted because updated drawings are being provided.
- Form OP-102 (criteria pollutants) is not submitted because the instructions specify that the form is only required if a change in the facility-wide limits is requested. No changes to facility-wide limits are being requested.
- Form OP-103 (HAP) is not submitted because the instructions specify that the form is only required if a change in the facility-wide limits is requested. No changes to facility-wide limits are being requested.
- Form OP-104 (permit shield) is not included because a permit shield is not being requested
- Form OP-105 (insignificant activities) is included as there are changes requested to insignificant activities
- Forms OP-201 through 204 are not submitted because no modifications are being requested, this is not an oil and gas facility, compliance assurance monitoring does not apply and dispersion modeling does not apply.
- Forms OP301 through 314 are not submitted because no new emission units are being permitted with this renewal
- Form OP-400 is not submitted because it is only required if an OP Series 300 form is required.

6.0 ENVIRONMETNAL PLANS

Sometimes a Title V permit renewal triggers a requirement to update environmental plans such as a compliance assurance monitoring (CAM) plan. No updated plans are submitted because the Permit does not require any such plans.

7.0 CLOSING

Twin Landfill Corporation respectfully submits this air permit renewal application to CDPHE. If there are any questions, please contact Mr. Luke Schneider at Ischneider@twinenviro.com.

Signature Page

Golder Associates Inc.

Eryn Hall

Eryn Hall Engineer

Kya Birkenholz Associate and Senior Consultant

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/120614/project files/5 technical work/working/operating permit renewal/application narrative.docx

TABLES

TABLE 1 Potential Emissions from Fixed Roof Tank Milner Landfill

Parameters	Symbol	Units	Formula/Notes	Reference Equations ¹	Value
Tank Contents					Methanol
Tank Type					VFR
Throughput	Q	gal/yr			48,000
Tank Height	Hs	ft			11
Average Liquid Height	HL	ft	H _s / 2	Section 7.1.3.1.Eqn 1-16	5.5
Diameter	D	ft			4
Tank Shell Radius	R _s	ft	1/2*D		2
Tank Liquid Volume	V _{LX}	ft ³	(D/2) ² * pi * H _S	Section 7.1.3.1.2 Eqn 1-31	138
Tank Nominal Capacity	T _{CG}	gal	V _{LX} * 7.481		1,034
Turnovers	Ν		5.614*Q / V _{LX}	Section 7.1.6.2 Equation 60-3	12.00
Maximum Filling Rate	FRm	gal/hr			1,000
Roof Slope	S _R	ft/ft			0.0625
Tank roof Height	H _R	ft	S _R *R _s	Section 7.1.3.1.1 Equation 1-18	0.13
Tank Color/Shade					Beige/Cream
Paint Condition					Average
Paint Solar Absorptance	α	-		Table 7.1-6	0.42
Daily Total Solar Insolation Factor		Btu/ft ² ⋅d	AP-42 Chapter 7, Organic Liquid Storage Tanks	Table 7.1-7	1491
Daily Maximum Ambient Temperature	T _{AX}	٩F	AP-42 Chapter 7, Organic Liquid Storage Tanks	Table 7.1-7	63.5
Daily Minimum Ambient Temperature	T _{AN}	٥F	AP-42 Chapter 7, Organic Liquid Storage Tanks	Table 7.1-7	37.9
Daily Ambient Temp. Change	ΔT_A	٥F	T _{AX} - T _{AN}	Section 7.1.3.1.1 Eqn 1-12	25.60
Daily Avg. Ambient Temperature	T_{AA}	٩R	((T _{AX} +459.67)+(T _{AN} +459.67))/2	Section 7.1.3.1.1 Eqn 1-27	510.4
Liquid Bulk Temperature	Τ _b	٩R	T _{AA} +(0.003*α _s *I)	Section 7.1.3.1.1 Eqn 1-31	512.2
Daily Avg. Liquid Surface Temp.	T _{LA}	٩R	$(0.4 T_{AA})+0.6 T_B)+(0.005^*\alpha^*I)$	Section 7.1.3.1.1 Eqn 1-28	514.6
Daily Max. Avg. Liq. Surf. Temp.	T _{LX}	٩R	T _{LA} +0.25*ΔT _V	Figure 7.1-17	522.2
Daily Min. Avg. Liq. Surf. Temp.	T _{LN}	٩R	T_{LA} -0.25* ΔT_{V}	Figure 7.1-17	507.0
Daily Vapor Temperature Range	ΔT_{V}	٥F	(0.7*ΔT _A)+ (0.02 *α*I)	Section 7.1.3.1.1 Eqn 1-7	30.4
Liquid Molecular Wt.	ML	lb/lb-mole	AP-42 Chapter 7, Organic Liquid Storage Tanks	Table 7.1-2	32.04
Vapor Molecular Wt.	Mv	lb/lb-mole	AP-42 Chapter 7, Organic Liquid Storage Tanks	Table 7.1-2	32.04
Reid Vapor Pressure	RVP	psi			NA
C-C Vapor Pressure Equation Constant A	A	dimensionless	12.82-0.9672ln(RVP)	Table 7.1-2	8.079
C-C Vapor Pressure Equation Constant B	В	٩R	7261-1216ln(RVP)	Table 7.1-2	3338.01
True Vapor Pressure @ TLA	P _{VA}	psia @ T _{LA}	exp(A-(B/T _{LA})	Section 7.1.3.1.1 Eqn 1-25	4.917
True Vapor Pressure @ TLX	P _{VX}	psia @ T _{LX}	exp(A-(B/T _{LX})	Section 7.1.3.1.1 Eqn 1-25	5.405
True Vapor Pressure @ TLN	P _{VN}	psia @ T _{LN}	exp(A-(B/T _{LN})	Section 7.1.3.1.1 Eqn 1-25	4.461
Vapor Pressure Function	P*	dimensionless	$P_{VA}/P_A/(1+(1-(P_{VA}/P_A))^{0.5})^2$		0.10146
Daily Vapor Pressure Range	ΔP_V	psia	P _{VX} - P _{VN}	Section 7.1.3.1.1 Eqn 1-9	0.94372
Atmospheric Pressure (ΔP _B)		psia	P _{BP} -P _{BV}	Section 7.1.3.1.1 Eqn 1-10	0.06
Breather Vent Pressure Setting (P _{BP})		psig		Section 7.1.3.1.1 Eqn 1-10	0.03
Breather Vent Vacuum Setting (P _{BV})		psig		Section 7.1.3.1.1 Eqn 1-10	-0.03
True Vapor Pressure @ 95F	Р	psia	exp(A-(B/T _{LA}))	Section 7.1.3.1.1 Eqn 1-24	7.854
Roof Outage	H _{RO}	ft	1/3 * H _R	Section 7.1.3.1.1 Eqn 1-16	0.04
Vapor Space Outage	H _{vo}	ft	(H _S -H _{L)} +H _{RO}	Section 7.1.3.1.1 Eqn 1-15	5.54
Vapor Space Expansion Factor	K _E		$(\Delta T_V/T_{LA}) + ((\Delta P_V - \Delta P_B)/(P_A - P_{VA})))$	Section 7.1.3.1.1 Eqn 1-5	0.149
Vented Vapor Saturation Factor	Ks		1/(1 + 0.053 * P _{VA} * H _{VO})	Table 7.1-22 Eqn 1-21	0.06
Turnover Factor	K _N		turnovers < 36 = 1, turnovers > 36 = (180 + N)/6N	Section 7.1.3.1.2 Eqn 1-29	1
Working Loss Product Factor	K _P		0.75 for crude oils, 1.0 all other organic liquids		1
Daily Vapor Pressure Range	ΔΡν	psia	P _{VX} -P _{VN}	Section 7.1.3.1.1 Eqn 1-9	0.944
Vapor Space Volume	V _V	ft ³	$pi * (D/2)^2 * H_{VQ}$	Section 7.1.3.1.1 Eqn 1-15	70
Vapor Density	W _V	lb/ft ³	(M _V * P _{VA}) / (10.731*T _{LA})	Section 7.1.3.1.1 Eqn 1-21	0.02853
Standing Losses	L _s	lb/vr	365 * V _V * W _V * K _E * K _S	Section 7.1.3.1.1 Eqn 1-2	7.0
Working Losses	L _w	lb/vr	0.0010 * M _V * P _{VA} * Q/42 * K _N * K _P	Section 7.1.3.1.2 Eqn 1-29	180.1
Total Losses	L	lb/vr	L _s + L _w	Section 7.1.3.1 Ean 1-1	187.1
Annual VOC Emission Rate	I	tov	L _T / 2000		0.094
Max. VOC Emission Rate	L _{MAX}	lb/hr	(M _V *P _{VA}) / (R*T)*FRm		5.652

Notes:

1. Emissions calculated based on Emission Factor Documentation for AP-42 Section 7.1 Organic Liquid Storage Tanks

FIGURES

FIGURE

1

REFERENCE(S)

PROJECT MILNER LANDFILL

SITE LOCATION MAP

AIR OPERATING PERMIT RENEWAL TITLE

PROJECT NO. CONTROL REV. 19136352 00 00

CLIENT TWIN ENVIRO SERVICES

YYYY-MM-DD	2020-09-11
DESIGNED	RCB
PREPARED	RCB
REVIEWED	EH
APPROVED	RCB

APPENDIX A

LANDGEM Model Results

2033

Gas / Pollutant	Emission Rate						
GasirFoliulant	(Mg/year)	(m³/year)	(av ft³/min)	(ft ³ /year)	(short tons/year)		
Total landfill gas	1.560E+04	1.249E+07	8.394E+02	4.412E+08	1.716E+04		
Methane	4.167E+03	6.246E+06	4.197E+02	2.206E+08	4.584E+03		
Carbon dioxide	1.143E+04	6.246E+06	4.197E+02	2.206E+08	1.258E+04		
NMOC	1.084E+02	3.023E+04	2.031E+00	1.068E+06	1.192E+02		
1,1,1-Trichloroethane (methyl chloroform) - HAP	3.327E-02	5.997E+00	4.029E-04	2.118E+02	3.660E-02		
1.1.2.2-Tetrachloroethane - HAP/VOC	9.594E-02	1.374E+01	9.233E-04	4.853E+02	1.055E-01		
1.1-Dichloroethane (ethylidene dichloride) - HAP/VOC	1.234E-01	2.998E+01	2.015E-03	1.059E+03	1.358E-01		
1.1-Dichloroethene (vinvlidene chloride) - HAP/VOC	1.007E-02	2.499F+00	1.679E-04	8.824F+01	1.108E-02		
1.2-Dichloroethane (ethylene dichloride) - HAP/VOC	2.108E-02	5.122E+00	3.441E-04	1.809E+02	2.319E-02		
1.2-Dichloropropane (propylene dichloride) - HAP/VOC	1.057E-02	2 249E+00	1 511E-04	7 941E+01	1 162E-02		
2-Pronanol (isopropyl alcohol) - VOC	1.562E±00	6 246E+02	4 197E-02	2 206E+04	1.102E 02		
	2 113E-01	8 7/5E+01	5.876E-03	2.200E104	2 324E-01		
Accilonic Accilonitrilo HARA/ACC	1 737E 01	7 870E+01	5.070E 03	2 770E+03	1 011E 01		
Benzene - No or Unknown Co-disposal - HAP//OC	7 711E-02	2 374E±01	1.505E-03	8 382E±02	8.483E-02		
	1.7112-02	1 207E+02	0.217E 02	0.302L+02	1 056E 01		
Benzenie - Co-disposal - HAF/VOC	4.505E-01	2.972E+02	9.317E-03	4.097 E+03	4.950E-01		
	2.039E-01	5.073E+01	2.002E-03	1.306E+03	2.903E-01		
Dularie - VOC	1.510E-01	0.240E+01	4.197E-03	2.200E+03	1.001E-01		
Carbon disulfide - HAP/VOC	2.294E-02	7.246E+00	4.868E-04	2.559E+02	2.524E-02		
	2.038E+00	1.749E+03	1.175E-01	6.177E+04	2.241E+00		
Carbon tetrachloride - HAP/VOC	3.197E-04	4.997E-02	3.358E-06	1.765E+00	3.517E-04		
Carbonyl sulfide - HAP/VOC	1.529E-02	6.121E+00	4.113E-04	2.162E+02	1.682E-02		
Chlorobenzene - HAP/VOC	1.462E-02	3.123E+00	2.098E-04	1.103E+02	1.608E-02		
Chlorodifluoromethane	5.841E-02	1.624E+01	1.091E-03	5.735E+02	6.425E-02		
Chloroethane (ethyl chloride) - HAP/VOC	4.358E-02	1.624E+01	1.091E-03	5.735E+02	4.794E-02		
Chloroform - HAP/VOC	1.861E-03	3.748E-01	2.518E-05	1.324E+01	2.047E-03		
Chloromethane - VOC	3.148E-02	1.499E+01	1.007E-03	5.294E+02	3.463E-02		
Dichlorobenzene - (HAP for para isomer/VOC)	1.604E-02	2.623E+00	1.763E-04	9.265E+01	1.764E-02		
Dichlorodifluoromethane	1.005E+00	1.999E+02	1.343E-02	7.059E+03	1.106E+00		
Dichlorofluoromethane - VOC	1.390E-01	3.248E+01	2.182E-03	1.147E+03	1.529E-01		
Dichloromethane (methylene chloride) - HAP	6.179E-01	1.749E+02	1.175E-02	6.177E+03	6.797E-01		
Dimethyl sulfide (methyl sulfide) - VOC	2.518E-01	9.744E+01	6.547E-03	3.441E+03	2.770E-01		
Ethane	1.391E+01	1.112E+04	7.471E-01	3.927E+05	1.530E+01		
Ethanol - VOC	6.465E-01	3.373E+02	2.266E-02	1.191E+04	7.111E-01		
Ethyl mercaptan (ethanethiol) - VOC	7.425E-02	2.873E+01	1.931E-03	1.015E+03	8.168E-02		
Ethylbenzene - HAP/VOC	2.537E-01	5.747E+01	3.861E-03	2.029E+03	2.791E-01		
Ethylene dibromide - HAP/VOC	9.762E-05	1.249E-02	8.394E-07	4.412E-01	1.074E-04		
Fluorotrichloromethane - VOC	5.425E-02	9.495E+00	6.379E-04	3.353E+02	5.968E-02		
Hexane - HAP/VOC	2.955E-01	8.245E+01	5.540E-03	2.912E+03	3.251E-01		
Hydrogen sulfide	6.375E-01	4.497E+02	3.022E-02	1.588E+04	7.012E-01		
Mercury (total) - HAP	3.023E-05	3.623E-03	2.434E-07	1.279E-01	3.325E-05		
Methyl ethyl ketone - HAP/VOC	2.660E-01	8.870E+01	5.960E-03	3.132E+03	2.926E-01		
Methyl isobutyl ketone - HAP/VOC	9.888E-02	2.374F+01	1.595E-03	8.382E+02	1.088E-01		
Methyl mercantan - VOC	6 250E-02	3 123E+01	2.098E-03	1 103E+03	6.875E-02		
Pentane - VOC	1 237E-01	4 123E+01	2.000E-00	1.100E+00	1 361E-01		
Perchloroethylene (tetrachloroethylene) - HAP	3 188E-01	4.622E+01	3 106E-03	1.400E+00	3 507E-01		
Pronane - V/OC	2 520E-01	1 374E+02	0.100E 00	4.853E+03	2 772E-01		
t-1 2-Dichloroethene - VOC	1 410E-01	3.498E±01	2.350E-03	1.035E+03	1.551E-01		
Toluene - No or Unknown Co-disposal - HAP//OC	1.410E 01	4.872E±02	2.000E 00	1.200E100	2.054E±00		
Toluene - Co-disposal - HAP//OC	8 138E±00	2 124E±03	1.427E-01	7.500E±04	8.952E±00		
Trichlereethylene (trichlereethene) HAR//OC		2.1242+03	2 2505 02	1.3000-04	2 102E 01		
	2.2715.01	0.120E+01	2.330E-03	1.2332+03	2.103E-01		
	2.37 IE-01	9.120E+01	0.120E-03	5.221E+03	2.000E-01		
Xylenes - HAF/VOC	0.019E-01	1.499E+02	1.007E-02	5.294E+03	7.201E-01		

Summary Report

Landfill Name or Identifier: Milner Landfill

C

Date: Tuesday, September 15, 2020

Description/Comments:

Arid methane generation rate chosen based on data from that indicates average preceipitation is less than 25 inches of rainfall per year. Inventory methane capacity chosen to represent PTE as per guidance from CDPHE. NMOC concentration of 2420 ppmv as hexane based on maximum allowable in existing permit. Future waste acceptance assumed to be at permit limit. Petroleum Contaminated Soil (PCS) included in waste totals.

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10} \right) e^{-kt_{ij}}$$

Where,

 Q_{CH4} = annual methane generation in the year of the calculation (m^3 /year)

- i = 1-year time increment
- n = (year of the calculation) (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate ($year^{-1}$)

 L_o = potential methane generation capacity (m^3/Mg)

 $\begin{array}{l} M_i = mass \ of \ waste \ accepted \ in \ the \ i^{th} \ year \ (Mg) \\ t_{ij} = age \ of \ the \ j^{th} \ section \ of \ waste \ mass \ M_i \ accepted \ in \ the \ i^{th} \ year \\ (decimal \ years \ , \ e.g., \ 3.2 \ years) \end{array}$

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

LANDFILL CHARACTERISTICS		
Landfill Open Year	1983	
Landfill Closure Year (with 80-year limit)	2033	
Actual Closure Year (without limit)	2033	
Have Model Calculate Closure Year?	Yes	
Waste Design Capacity	4,431,915	megagrams
MODEL PARAMETERS		
Methane Generation Rate, k	0.020	year ⁻¹
Potential Methane Generation Capacity, L_o	100	m ³ /Mg
NMOC Concentration	2,420	ppmv as hexane
Methane Content	50	% by volume

GASES / POLLUTANTS	SELECTED
Gas / Pollutant #1:	Total landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

WASTE ACCEPTANCE RATES

<u> </u>	Waste Ace	cepted	Waste-In-Place		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1983	266,715	293,387	0	0	
1984	34,380	37,818	266,715	293,387	
1985	32,420	35,662	301,095	331,205	
1986	26,893	29,582	333,515	366,867	
1987	25,588	28,147	360,408	396,449	
1988	32,352	35,587	385,996	424,596	
1989	34,024	37,426	418,348	460,183	
1990	34,137	37,551	452,372	497,609	
1991	32,095	35,304	486,509	535,160	
1992	35,123	38,635	518,604	570,464	
1993	43,107	47,418	553,726	609,099	
1994	49,054	53,959	596,834	656,517	
1995	55,279	60,807	645,887	710,476	
1996	52,692	57,961	701,166	771,283	
1997	57,681	63,449	753,858	829,244	
1998	64,294	70,723	811,539	892,693	
1999	68,484	75,332	875,833	963,416	
2000	67,591	74,350	944,316	1,038,748	
2001	81,224	89,346	1,011,907	1,113,098	
2002	74,315	81,747	1,093,131	1,202,444	
2003	67,406	74,147	1,167,446	1,284,191	
2004	75,948	83,543	1,234,853	1,358,338	
2005	80,247	88,272	1,310,801	1,441,881	
2006	117,714	129,485	1,391,048	1,530,153	
2007	118,276	130,104	1,508,762	1,659,638	
2008	99,932	109,925	1,627,038	1,789,742	
2009	85,121	93,633	1,726,970	1,899,667	
2010	72,960	80,256	1,812,091	1,993,300	
2011	69,375	76,313	1,885,051	2,073,556	
2012	38,087	41,896	1,954,426	2,149,869	
2013	49,334	54,267	1,992,514	2,191,765	
2014	40,622	44,684	2,041,847	2,246,032	
2015	47,636	52,400	2,082,469	2,290,716	
2016	51,198	56,318	2,130,105	2,343,116	
2017	54,407	59,848	2,181,304	2,399,434	
2018	69,082	75,990	2,235,711	2,459,282	
2019	67,432	74,176	2,304,793	2,535,272	
2020	159,091	175,000	2,372,225	2,609,448	
2021	159,091	175,000	2,531,316	2,784,448	
2022	159 091	175 000	2 690 407	2 959 448	

WASTE ACCEPTANCE RATES (Continued)

Voar	Waste Ac	cepted	Waste-In-Place		
real	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
2023	159,091	175,000	2,849,498	3,134,448	
2024	159,091	175,000	3,008,589	3,309,448	
2025	159,091	175,000	3,167,680	3,484,448	
2026	159,091	175,000	3,326,771	3,659,448	
2027	159,091	175,000	3,485,861	3,834,448	
2028	159,091	175,000	3,644,952	4,009,448	
2029	159,091	175,000	3,804,043	4,184,448	
2030	159,091	175,000	3,963,134	4,359,448	
2031	159,091	175,000	4,122,225	4,534,448	
2032	159,091	175,000	4,281,316	4,709,448	
2033			4,440,407	4,884,448	
2034	0	0	4,431,915	4,875,107	
2035	0	0	4,431,915	4,875,107	
2036	0	0	4,431,915	4,875,107	
2037	0	0	4,431,915	4,875,107	
2038	0	0	4,431,915	4,875,107	
2039	0	0	4,431,915	4,875,107	
2040	0	0	4,431,915	4,875,107	
2041	0	0	4,431,915	4,875,107	
2042	0	0	4,431,915	4,875,107	
2043	0	0	4,431,915	4,875,107	
2044	0	0	4,431,915	4,875,107	
2045	0	0	4,431,915	4,875,107	
2046	0	0	4,431,915	4,875,107	
2047	0	0	4,431,915	4,875,107	
2048	0	0	4,431,915	4,875,107	
2049	0	0	4,431,915	4,875,107	
2050	0	0	4,431,915	4,875,107	
2051	0	0	4,431,915	4,875,107	
2052	0	0	4,431,915	4,875,107	
2053	0	0	4,431,915	4,875,107	
2054	0	0	4,431,915	4,875,107	
2055	0	0	4,431,915	4,875,107	
2056	0	0	4,431,915	4,875,107	
2057	0	0	4,431,915	4,875,107	
2058	0	0	4,431,915	4,875,107	
2059	0	0	4,431,915	4,875,107	
2060	0	0	4,431,915	4,875,107	
2061	0	0	4,431,915	4,875,107	
2062	0	0	4,431,915	4,875,107	

Pollutant Parameters

	Gas / Pol	Gas / Pollutant Default Parameters:			User-specified Pollutant Parameters:		
	Commonweak	Concentration		Concentration			
	Compound	(ppmv)		(ppmv)	Molecular Weight		
ŝ	Methane		16.04				
asi	Carbon dioxide		10.04				
Ü	NMOC	4 000	86.18				
	1 1 1-Trichloroethane	4,000	00.10				
	(methyl chloroform) -						
	HAP	0.48	133.41				
	1,1,2,2-						
	Tetrachloroethane -						
	HAP/VOC	1.1	167.85				
	1,1-Dichloroethane						
	(ethylidene dichloride) -						
		2.4	98.97				
	1,1-Dichloroethene						
	(Vinylidene chioride) -	0.20	06.04				
	1 2 Dichloroothano	0.20	90.94				
	(ethylene dichloride) -						
	HAP/VOC	0.41	98.96				
	1,2-Dichloropropane	0	00.00				
	(propylene dichloride)						
	HAP/VOC	0.18	112.99				
	2-Propanol (isopropyl						
	alcohol) - VOC	50	60.11				
	Acetone	7.0	58.08				
	Acrylonitrile - HAP/VOC	6.2	53.06				
	Benzene - No or	0.0	55.00				
	Unknown Co-disposal -						
	HAP/VOC	1.9	78.11				
	Benzene - Co-disposal -						
s	HAP/VOC	11	78.11	11.10			
ant	Bromodichloromethane -						
Int	VOC	3.1	163.83				
Po	Butane - VOC	5.0	58.12				
		0.58	76 13				
	Carbon monoxide	140	28.01				
	Carbon tetrachloride -	UTU	20.01				
	HAP/VOC	4.0E-03	153.84				
	Carbonyl sulfide -						
	HAP/VOC	0.49	60.07				
	Chlorobenzene -						
	HAP/VOC	0.25	112.56				
	Chlorodifluoromethane	1.3	86.47				
	Chloroetnane (ethyl	1.2	64 50				
	Chloroform HAR/VOC	1.3	04.02				
	Chloromethane - VOC	1.0	50.49				
		1.2	00.10				
	ior para isomer/VOC)	0.21	147				
	Dichlorodifluoromethane						
	Dishlarafluareas the	16	120.91				
	VOC	2.6	102.92				
	Dichloromethane	2.0					
	(methylene chloride) -						
	HAP	14	84.94				
	Dimethyl sulfide (methyl						
	sulfide) - VOC	7.8	62.13				
	Ethanol - VOC	<u>890</u> 27	30.07				
		<u> </u>	+0.00				

Pollutant Parameters (Continued)

	Gas / Pol	lutant Default Param	User-specified Pollutant Parameters:		
		Concentration		Concentration	
	Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight
	Ethyl mercaptan	0.0	CO 40		
	(ethanethiol) - VOC	2.3	62.13		
		4.6	106 16		
	Ethylene dibromide -	0	100.10		
	HAP/VOC	1.0E-03	187.88		
	Fluorotrichloromethane -				
	VOC	0.76	137.38		
	Hexane - HAP/VOC	6.6	86.18		
	Hydrogen sulfide	36	34.08		
	Mercury (total) - HAP	2.9E-04	200.61		
	Methyl ethyl ketone -	7.4	70.44		
	HAP/VOC Mathyl iachutyl katona	7.1	72.11		
		1 0	100.16		
		1.9	100.10		
	Methyl mercaptan - VOC	2.5	48.11		
	Pentane - VOC	3.3	72.15		
	Perchloroethylene				
	(tetrachloroethylene) -				
	HAP	3.7	165.83		
	Propane - VOC	11	44.09		
	t-1,2-Dichloroethene -	0.0	00.04		
	VUC Teluene Ne er	2.8	96.94		
	Linknown Co-disposal -				
	HAP/VOC	39	92 13		
	Toluene - Co-disposal -	00	02.10		
	HAP/VOC	170	92.13		
	Trichloroethylene				
S	(trichloroethene) -				
ant	HAP/VOC	2.8	131.40		
Int	Vinyl chloride -				
Pol	HAP/VOC	7.3	62.50		
	Xylenes - HAP/VUC	12	106.16		

<u>Graphs</u>

<u>Results</u>

V	Total landfill gas			Methane		
Year	(Mg/year)	(m³/year)	(short tons/year)	(Mg/year)	(m³/year)	(short tons/year)
1983	0	0	0	0	0	0
1984	1.320E+03	1.057E+06	1.452E+03	3.527E+02	5.287E+05	3.880E+02
1985	1.464E+03	1.173E+06	1.611E+03	3.912E+02	5.863E+05	4.303E+02
1986	1.596E+03	1.278E+06	1.756E+03	4.263E+02	6.390E+05	4.689E+02
1987	1.697E+03	1.359E+06	1.867E+03	4.534E+02	6.796E+05	4.988E+02
1988	1.791E+03	1.434E+06	1.970E+03	4.783E+02	7.169E+05	5.261E+02
1989	1.915E+03	1.534E+06	2.107E+03	5.116E+02	7.668E+05	5.627E+02
1990	2.046E+03	1.638E+06	2.250E+03	5.465E+02	8.191E+05	6.011E+02
1991	2.174E+03	1.741E+06	2.392E+03	5.808E+02	8.705E+05	6.388E+02
1992	2.290E+03	1.834E+06	2.519E+03	6.117E+02	9.169E+05	6.729E+02
1993	2.419E+03	1.937E+06	2.661E+03	6.460E+02	9.684E+05	7.106E+02
1994	2.584E+03	2.069E+06	2.843E+03	6.903E+02	1.035E+06	7.593E+02
1995	2.776E+03	2.223E+06	3.053E+03	7.415E+02	1.111E+06	8.156E+02
1996	2.995E+03	2.398E+06	3.294E+03	7.999E+02	1.199E+06	8.799E+02
1997	3.196E+03	2.559E+06	3.516E+03	8.537E+02	1.280E+06	9.391E+02
1998	3.418E+03	2.737E+06	3.760E+03	9.131E+02	1.369E+06	1.004E+03
1999	3.669E+03	2.938E+06	4.036E+03	9.800E+02	1.469E+06	1.078E+03
2000	3.935E+03	3.151E+06	4.329E+03	1.051E+03	1.576E+06	1.156E+03
2001	4.192E+03	3.357E+06	4.611E+03	1.120E+03	1.678E+06	1.232E+03
2002	4.511E+03	3.612E+06	4.962E+03	1.205E+03	1.806E+06	1.325E+03
2003	4.790E+03	3.835E+06	5.269E+03	1.279E+03	1.918E+06	1.407E+03
2004	5.029E+03	4.027E+06	5.531E+03	1.343E+03	2.013E+06	1.478E+03
2005	5.305E+03	4.248E+06	5.836E+03	1.417E+03	2.124E+06	1.559E+03
2006	5.597E+03	4.482E+06	6.157E+03	1.495E+03	2.241E+06	1.645E+03
2007	6.069E+03	4.860E+06	6.676E+03	1.621E+03	2.430E+06	1.783E+03
2008	6.535E+03	5.233E+06	7.188E+03	1.745E+03	2.616E+06	1.920E+03
2009	6.900E+03	5.525E+06	7.590E+03	1.843E+03	2.763E+06	2.027E+03
2010	7.185E+03	5.753E+06	7.903E+03	1.919E+03	2.877E+06	2.111E+03
2011	7.404E+03	5.928E+06	8.144E+03	1.978E+03	2.964E+06	2.175E+03
2012	7.600E+03	6.086E+06	8.360E+03	2.030E+03	3.043E+06	2.233E+03
2013	7.638E+03	6.117E+06	8.402E+03	2.040E+03	3.058E+06	2.244E+03
2014	7.731E+03	6.191E+06	8.505E+03	2.065E+03	3.095E+06	2.272E+03
2015	7.779E+03	6.229E+06	8.557E+03	2.078E+03	3.115E+06	2.286E+03
2016	7.861E+03	6.295E+06	8.647E+03	2.100E+03	3.147E+06	2.310E+03
2017	7.959E+03	6.373E+06	8.755E+03	2.126E+03	3.187E+06	2.339E+03
2018	8.071E+03	6.463E+06	8.878E+03	2.156E+03	3.231E+06	2.371E+03
2019	8.253E+03	6.609E+06	9.078E+03	2.204E+03	3.304E+06	2.425E+03
2020	8.423E+03	6.745E+06	9.266E+03	2.250E+03	3.373E+06	2.475E+03
2021	9.044E+03	7.242E+06	9.949E+03	2.416E+03	3.621E+06	2.657E+03
2022	9.653E+03	7.729E+06	1.062E+04	2.578E+03	3.865E+06	2.836E+03
2023	1.025E+04	8.207E+06	1.127E+04	2.738E+03	4.104E+06	3.011E+03
2024	1.083E+04	8.675E+06	1.192E+04	2.894E+03	4.338E+06	3.183E+03
2025	1.141E+04	9.134E+06	1.255E+04	3.047E+03	4.567E+06	3.352E+03
2026	1.197E+04	9.584E+06	1.317E+04	3.197E+03	4.792E+06	3.517E+03
2027	1.252E+04	1.002E+07	1.377E+04	3.344E+03	5.012E+06	3.678E+03
2028	1.306E+04	1.046E+07	1.436E+04	3.488E+03	5.228E+06	3.837E+03
2029	1.359E+04	1.088E+07	1.495E+04	3.629E+03	5.440E+06	3.992E+03
2030	1.411E+04	1.130E+07	1.552E+04	3.768E+03	5.648E+06	4.145E+03
2031	1.461E+04	1.170E+07	1.608E+04	3.904E+03	5.851E+06	4.294E+03
2032	1.511E+04	1.210E+07	1.662E+04	4.037E+03	6.051E+06	4.441E+03

Veen	Total landfill gas			Methane		
rear	(Mg/year)	(m ³ /year)	(short tons/year)	(Mg/year)	(m³/year)	(short tons/year)
2033	1.560E+04	1.249E+07	1.716E+04	4.167E+03	6.246E+06	4.584E+03
2034	1.525E+04	1.221E+07	1.678E+04	4.074E+03	6.106E+06	4.481E+03
2035	1.495E+04	1.197E+07	1.644E+04	3.993E+03	5.985E+06	4.392E+03
2036	1.465E+04	1.173E+07	1.612E+04	3.914E+03	5.866E+06	4.305E+03
2037	1.436E+04	1.150E+07	1.580E+04	3.836E+03	5.750E+06	4.220E+03
2038	1.408E+04	1.127E+07	1.549E+04	3.760E+03	5.636E+06	4.136E+03
2039	1.380E+04	1.105E+07	1.518E+04	3.686E+03	5.525E+06	4.054E+03
2040	1.353E+04	1.083E+07	1.488E+04	3.613E+03	5.415E+06	3.974E+03
2041	1.326E+04	1.062E+07	1.458E+04	3.541E+03	5.308E+06	3.895E+03
2042	1.300E+04	1.041E+07	1.430E+04	3.471E+03	5.203E+06	3.818E+03
2043	1.274E+04	1.020E+07	1.401E+04	3.402E+03	5.100E+06	3.743E+03
2044	1.249E+04	9.998E+06	1.373E+04	3.335E+03	4.999E+06	3.669E+03
2045	1.224E+04	9.800E+06	1.346E+04	3.269E+03	4.900E+06	3.596E+03
2046	1.200E+04	9.606E+06	1.320E+04	3.204E+03	4.803E+06	3.525E+03
2047	1.176E+04	9.416E+06	1.293E+04	3.141E+03	4.708E+06	3.455E+03
2048	1.153E+04	9.229E+06	1.268E+04	3.079E+03	4.615E+06	3.387E+03
2049	1.130E+04	9.047E+06	1.243E+04	3.018E+03	4.523E+06	3.320E+03
2050	1.107E+04	8.868E+06	1.218E+04	2.958E+03	4.434E+06	3.254E+03
2051	1.085E+04	8.692E+06	1.194E+04	2.899E+03	4.346E+06	3.189E+03
2052	1.064E+04	8.520E+06	1.170E+04	2.842E+03	4.260E+06	3.126E+03
2053	1.043E+04	8.351E+06	1.147E+04	2.786E+03	4.176E+06	3.064E+03
2054	1.022E+04	8.186E+06	1.124E+04	2.731E+03	4.093E+06	3.004E+03
2055	1.002E+04	8.024E+06	1.102E+04	2.676E+03	4.012E+06	2.944E+03
2056	9.822E+03	7.865E+06	1.080E+04	2.624E+03	3.932E+06	2.886E+03
2057	9.627E+03	7.709E+06	1.059E+04	2.572E+03	3.855E+06	2.829E+03
2058	9.437E+03	7.556E+06	1.038E+04	2.521E+03	3.778E+06	2.773E+03
2059	9.250E+03	7.407E+06	1.017E+04	2.471E+03	3.703E+06	2.718E+03
2060	9.067E+03	7.260E+06	9.973E+03	2.422E+03	3.630E+06	2.664E+03
2061	8.887E+03	7.116E+06	9.776E+03	2.374E+03	3.558E+06	2.611E+03
2062	8.711E+03	6.975E+06	9.582E+03	2.327E+03	3.488E+06	2.560E+03
2063	8.539E+03	6.837E+06	9.393E+03	2.281E+03	3.419E+06	2.509E+03
2064	8.370E+03	6.702E+06	9.207E+03	2.236E+03	3.351E+06	2.459E+03
2065	8.204E+03	6.569E+06	9.024E+03	2.191E+03	3.285E+06	2.410E+03
2066	8.041E+03	6.439E+06	8.846E+03	2.148E+03	3.220E+06	2.363E+03
2067	7.882E+03	6.312E+06	8.670E+03	2.105E+03	3.156E+06	2.316E+03
2068	7.726E+03	6.187E+06	8.499E+03	2.064E+03	3.093E+06	2.270E+03
2069	7.573E+03	6.064E+06	8.330E+03	2.023E+03	3.032E+06	2.225E+03
2070	7.423E+03	5.944E+06	8.165E+03	1.983E+03	2.972E+06	2.181E+03
2071	7.276E+03	5.826E+06	8.004E+03	1.944E+03	2.913E+06	2.138E+03
2072	7.132E+03	5./11E+06	7.845E+03	1.905E+03	2.856E+06	2.096E+03
2073	6.991E+03	5.598E+06	7.690E+03	1.867E+03	2.799E+06	2.054E+03
2074	6.852E+03	5.487E+06	7.538E+03	1.830E+03	2.744E+06	2.013E+03
2075	6./1/E+03	5.3/8E+06	7.388E+03	1.794E+03	2.689E+06	1.9/4E+03
2076	6.584E+03	5.2/2E+06	7.242E+03	1.759E+03	2.636E+06	1.934E+03
2077	6.453E+03	5.168E+06	7.099E+03	1./24E+03	2.584E+06	1.896E+03
2078	6.326E+03	5.065E+06	6.958E+03	1.690E+03	2.533E+06	1.859E+03
2079	6.200E+03	4.965E+06	6.820E+03	1.656E+03	2.482E+06	1.822E+03
2080	6.078E+03	4.86/E+06	6.685E+03	1.623E+03	2.433E+06	1.786E+03
2081	5.957E+03	4.//UE+06	6.553E+03	1.591E+03	2.385E+06	1./50E+03
2082	5.839E+03	4.6/6E+06	6.423E+03	1.560E+03	2.338E+06	1./16E+03
2083	5.724E+03	4.583E+06	6.296E+03	1.529E+03	2.292E+06	1.682E+03

Veer	Total landfill gas		Methane			
rear	(Mg/year)	(m³/year)	(short tons/year)	(Mg/year)	(m³/year)	(short tons/year)
2084	5.610E+03	4.492E+06	6.171E+03	1.499E+03	2.246E+06	1.648E+03
2085	5.499E+03	4.403E+06	6.049E+03	1.469E+03	2.202E+06	1.616E+03
2086	5.390E+03	4.316E+06	5.929E+03	1.440E+03	2.158E+06	1.584E+03
2087	5.284E+03	4.231E+06	5.812E+03	1.411E+03	2.115E+06	1.552E+03
2088	5.179E+03	4.147E+06	5.697E+03	1.383E+03	2.074E+06	1.522E+03
2089	5.076E+03	4.065E+06	5.584E+03	1.356E+03	2.032E+06	1.492E+03
2090	4.976E+03	3.984E+06	5.473E+03	1.329E+03	1.992E+06	1.462E+03
2091	4.877E+03	3.906E+06	5.365E+03	1.303E+03	1.953E+06	1.433E+03
2092	4.781E+03	3.828E+06	5.259E+03	1.277E+03	1.914E+06	1.405E+03
2093	4.686E+03	3.752E+06	5.155E+03	1.252E+03	1.876E+06	1.377E+03
2094	4.593E+03	3.678E+06	5.053E+03	1.227E+03	1.839E+06	1.350E+03
2095	4.502E+03	3.605E+06	4.953E+03	1.203E+03	1.803E+06	1.323E+03
2096	4.413E+03	3.534E+06	4.855E+03	1.179E+03	1.767E+06	1.297E+03
2097	4.326E+03	3.464E+06	4.758E+03	1.155E+03	1.732E+06	1.271E+03
2098	4.240E+03	3.395E+06	4.664E+03	1.133E+03	1.698E+06	1.246E+03
2099	4.156E+03	3.328E+06	4.572E+03	1.110E+03	1.664E+06	1.221E+03
2100	4.074E+03	3.262E+06	4.481E+03	1.088E+03	1.631E+06	1.197E+03
2101	3.993E+03	3.198E+06	4.393E+03	1.067E+03	1.599E+06	1.173E+03
2102	3.914E+03	3.134E+06	4.306E+03	1.046E+03	1.567E+06	1.150E+03
2103	3.837E+03	3.072E+06	4.220E+03	1.025E+03	1.536E+06	1.127E+03
2104	3.761E+03	3.011E+06	4.137E+03	1.005E+03	1.506E+06	1.105E+03
2105	3.686E+03	2.952E+06	4.055E+03	9.846E+02	1.476E+06	1.083E+03
2106	3.613E+03	2.893E+06	3.975E+03	9.651E+02	1.447E+06	1.062E+03
2107	3.542E+03	2.836E+06	3.896E+03	9.460E+02	1.418E+06	1.041E+03
2108	3.472E+03	2.780E+06	3.819E+03	9.273E+02	1.390E+06	1.020E+03
2109	3.403E+03	2.725E+06	3.743E+03	9.089E+02	1.362E+06	9.998E+02
2110	3.335E+03	2.671E+06	3.669E+03	8.909E+02	1.335E+06	9.800E+02
2111	3.269E+03	2.618E+06	3.596E+03	8.733E+02	1.309E+06	9.606E+02
2112	3.205E+03	2.566E+06	3.525E+03	8.560E+02	1.283E+06	9.416E+02
2113	3.141E+03	2.515E+06	3.455E+03	8.390E+02	1.258E+06	9.229E+02
2114	3.079E+03	2.466E+06	3.387E+03	8.224E+02	1.233E+06	9.047E+02
2115	3.018E+03	2.417E+06	3.320E+03	8.061E+02	1.208E+06	8.868E+02
2116	2.958E+03	2.369E+06	3.254E+03	7.902E+02	1.184E+06	8.692E+02
2117	2.900E+03	2.322E+06	3.190E+03	7.745E+02	1.161E+06	8.520E+02
2118	2.842E+03	2.276E+06	3.126E+03	7.592E+02	1.138E+06	8.351E+02
2119	2.786E+03	2.231E+06	3.065E+03	7.442E+02	1.115E+06	8.186E+02
2120	2.731E+03	2.187E+06	3.004E+03	7.294E+02	1.093E+06	8.024E+02
2121	2.677E+03	2.143E+06	2.944E+03	7.150E+02	1.072E+06	7.865E+02
2122	2.624E+03	2.101E+06	2.886E+03	7.008E+02	1.050E+06	7.709E+02
2123	2.572E+03	2.059E+06	2.829E+03	6.870E+02	1.030E+06	7.556E+02

Year	Carbon dioxide		NMOC			
	(Mg/year)	(m³/year)	(short tons/year)	(Mg/year)	(m³/year)	(short tons/year)
1983	0	0	0	0	0	0
1984	9.677E+02	5.287E+05	1.064E+03	9.172E+00	2.559E+03	1.009E+01
1985	1.073E+03	5.863E+05	1.181E+03	1.017E+01	2.838E+03	1.119E+01
1986	1.170E+03	6.390E+05	1.287E+03	1.109E+01	3.093E+03	1.219E+01
1987	1.244E+03	6.796E+05	1.368E+03	1.179E+01	3.289E+03	1.297E+01
1988	1.312E+03	7.169E+05	1.444E+03	1.244E+01	3.470E+03	1.368E+01
1989	1.404E+03	7.668E+05	1.544E+03	1.330E+01	3.711E+03	1.463E+01
1990	1.499E+03	8.191E+05	1.649E+03	1.421E+01	3.964E+03	1.563E+01
1991	1.594E+03	8.705E+05	1.753E+03	1.510E+01	4.213E+03	1.661E+01
1992	1.678E+03	9.169E+05	1.846E+03	1.591E+01	4.438E+03	1.750E+01
1993	1.773E+03	9.684E+05	1.950E+03	1.680E+01	4.687E+03	1.848E+01
1994	1.894E+03	1.035E+06	2.083E+03	1.795E+01	5.008E+03	1.974E+01
1995	2.034E+03	1.111E+06	2.238E+03	1.928E+01	5.379E+03	2.121E+01
1996	2.195E+03	1.199E+06	2.414E+03	2.080E+01	5.803E+03	2.288E+01
1997	2.342E+03	1.280E+06	2.577E+03	2.220E+01	6.193E+03	2.442E+01
1998	2.505E+03	1.369E+06	2.756E+03	2.374E+01	6.624E+03	2.612E+01
1999	2.689E+03	1.469E+06	2.958E+03	2.548E+01	7.110E+03	2.803E+01
2000	2.884E+03	1.576E+06	3.173E+03	2.734E+01	7.626E+03	3.007E+01
2001	3.072E+03	1.678E+06	3.380E+03	2.912E+01	8.123E+03	3.203E+01
2002	3.306E+03	1.806E+06	3.637E+03	3.133E+01	8.742E+03	3.447E+01
2003	3.510E+03	1.918E+06	3.861E+03	3.327E+01	9.282E+03	3.660E+01
2004	3.685E+03	2.013E+06	4.054E+03	3.493E+01	9.745E+03	3.842E+01
2005	3.888E+03	2.124E+06	4.277E+03	3.685E+01	1.028E+04	4.053E+01
2006	4.102E+03	2.241E+06	4.512E+03	3.888E+01	1.085E+04	4.277E+01
2007	4.448E+03	2.430E+06	4.893E+03	4.216E+01	1.176E+04	4.637E+01
2008	4.789E+03	2.616E+06	5.268E+03	4.539E+01	1.266E+04	4.993E+01
2009	5.057E+03	2.763E+06	5.563E+03	4.793E+01	1.337E+04	5.272E+01
2010	5.266E+03	2.877E+06	5.792E+03	4.990E+01	1.392E+04	5.490E+01
2011	5.426E+03	2.964E+06	5.969E+03	5.143E+01	1.435E+04	5.657E+01
2012	5.570E+03	3.043E+06	6.127E+03	5.279E+01	1.473E+04	5.807E+01
2013	5.598E+03	3.058E+06	6.158E+03	5.306E+01	1.480E+04	5.836E+01
2014	5.666E+03	3.095E+06	6.233E+03	5.370E+01	1.498E+04	5.907E+01
2015	5.701E+03	3.115E+06	6.272E+03	5.404E+01	1.508E+04	5.944E+01
2016	5.761E+03	3.147E+06	6.338E+03	5.460E+01	1.523E+04	6.007E+01
2017	5.833E+03	3.187E+06	6.416E+03	5.528E+01	1.542E+04	6.081E+01
2018	5.915E+03	3.231E+06	6.506E+03	5.606E+01	1.564E+04	6.167E+01
2019	6.049E+03	3.304E+06	6.653E+03	5.733E+01	1.599E+04	6.306E+01
2020	6.173E+03	3.373E+06	6.791E+03	5.851E+01	1.632E+04	6.436E+01
2021	6.628E+03	3.621E+06	7.291E+03	6.282E+01	1.753E+04	6.910E+01
2022	7.074E+03	3.865E+06	7.782E+03	6.705E+01	1.871E+04	7.375E+01
2023	7.512E+03	4.104E+06	8.263E+03	7.119E+01	1.986E+04	7.831E+01
2024	7.940E+03	4.338E+06	8.734E+03	7.525E+01	2.099E+04	8.278E+01
2025	8.360E+03	4.567E+06	9.196E+03	7.923E+01	2.210E+04	8.716E+01
2026	8.772E+03	4.792E+06	9.649E+03	8.313E+01	2.319E+04	9.145E+01
2027	9.1/5E+03	5.012E+06	1.009E+04	8.696E+01	2.426E+04	9.566E+01
2028	9.5/1E+03	5.228E+06	1.053E+04	9.0/1E+01	2.531E+04	9.9/8E+01
2029	9.958E+03	5.440E+06	1.095E+04	9.438E+01	2.633E+04	1.038E+02
2030	1.034E+04	5.648E+06	1.13/E+04	9.798E+01	2./34E+04	1.0/8E+02
2031	1.0/1E+04	5.851E+06	1.1/8E+04	1.015E+02	2.832E+04	1.11/E+02
2032	1.108E+04	6.051E+06	1.218E+04	1.050E+02	2.929E+04	1.155E+02

Veen	Carbon dioxide		NMOC			
Year	(Mg/year)	(m³/year)	(short tons/year)	(Mg/year)	(m³/year)	(short tons/year)
2033	1.143E+04	6.246E+06	1.258E+04	1.084E+02	3.023E+04	1.192E+02
2034	1.118E+04	6.106E+06	1.229E+04	1.059E+02	2.955E+04	1.165E+02
2035	1.096E+04	5.985E+06	1.205E+04	1.038E+02	2.897E+04	1.142E+02
2036	1.074E+04	5.866E+06	1.181E+04	1.018E+02	2.839E+04	1.120E+02
2037	1.053E+04	5.750E+06	1.158E+04	9.976E+01	2.783E+04	1.097E+02
2038	1.032E+04	5.636E+06	1.135E+04	9.779E+01	2.728E+04	1.076E+02
2039	1.011E+04	5.525E+06	1.112E+04	9.585E+01	2.674E+04	1.054E+02
2040	9.913E+03	5.415E+06	1.090E+04	9.395E+01	2.621E+04	1.033E+02
2041	9.717E+03	5.308E+06	1.069E+04	9.209E+01	2.569E+04	1.013E+02
2042	9.524E+03	5.203E+06	1.048E+04	9.027E+01	2.518E+04	9.929E+01
2043	9.336E+03	5.100E+06	1.027E+04	8.848E+01	2.468E+04	9.733E+01
2044	9.151E+03	4.999E+06	1.007E+04	8.673E+01	2.420E+04	9.540E+01
2045	8.970E+03	4.900E+06	9.867E+03	8.501E+01	2.372E+04	9.351E+01
2046	8.792E+03	4.803E+06	9.671E+03	8.333E+01	2.325E+04	9.166E+01
2047	8.618E+03	4.708E+06	9.480E+03	8.168E+01	2.279E+04	8.985E+01
2048	8.447E+03	4.615E+06	9.292E+03	8.006E+01	2.234E+04	8.807E+01
2049	8.280E+03	4.523E+06	9.108E+03	7.847E+01	2.189E+04	8.632E+01
2050	8.116E+03	4.434E+06	8.928E+03	7.692E+01	2.146E+04	8.461E+01
2051	7.955E+03	4.346E+06	8.751E+03	7.540E+01	2.103E+04	8.294E+01
2052	7.798E+03	4.260E+06	8.578E+03	7.390E+01	2.062E+04	8.130E+01
2053	7.643E+03	4.176E+06	8.408E+03	7.244E+01	2.021E+04	7.969E+01
2054	7.492E+03	4.093E+06	8.241E+03	7.101E+01	1.981E+04	7.811E+01
2055	7.344E+03	4.012E+06	8.078E+03	6.960E+01	1.942E+04	7.656E+01
2056	7.198E+03	3.932E+06	7.918E+03	6.822E+01	1.903E+04	7.504E+01
2057	7.056E+03	3.855E+06	7.761E+03	6.687E+01	1.866E+04	7.356E+01
2058	6.916E+03	3.778E+06	7.608E+03	6.555E+01	1.829E+04	7.210E+01
2059	6.779E+03	3.703E+06	7.457E+03	6.425E+01	1.792E+04	7.067E+01
2060	6.645E+03	3.630E+06	7.309E+03	6.298E+01	1.757E+04	6.928E+01
2061	6.513E+03	3.558E+06	7.165E+03	6.173E+01	1.722E+04	6.790E+01
2062	6.384E+03	3.488E+06	7.023E+03	6.051E+01	1.688E+04	6.656E+01
2063	6.258E+03	3.419E+06	6.884E+03	5.931E+01	1.655E+04	6.524E+01
2064	6.134E+03	3.351E+06	6.747E+03	5.814E+01	1.622E+04	6.395E+01
2065	6.013E+03	3.285E+06	6.614E+03	5.698E+01	1.590E+04	6.268E+01
2066	5.893E+03	3.220E+06	6.483E+03	5.586E+01	1.558E+04	6.144E+01
2067	5.777E+03	3.156E+06	6.354E+03	5.475E+01	1.527E+04	6.022E+01
2068	5.662E+03	3.093E+06	6.229E+03	5.367E+01	1.497E+04	5.903E+01
2069	5.550E+03	3.032E+06	6.105E+03	5.260E+01	1.468E+04	5.786E+01
2070	5.440E+03	2.972E+06	5.984E+03	5.156E+01	1.438E+04	5.672E+01
2071	5.333E+03	2.913E+06	5.866E+03	5.054E+01	1.410E+04	5.559E+01
2072	5.227E+03	2.856E+06	5.750E+03	4.954E+01	1.382E+04	5.449E+01
2073	5.124E+03	2.799E+06	5.636E+03	4.856E+01	1.355E+04	5.341E+01
2074	5.022E+03	2.744E+06	5.524E+03	4.760E+01	1.328E+04	5.236E+01
2075	4.923E+03	2.689E+06	5.415E+03	4.665E+01	1.302E+04	5.132E+01
2076	4.825E+03	2.636E+06	5.308E+03	4.573E+01	1.276E+04	5.030E+01
2077	4.730E+03	2.584E+06	5.203E+03	4.483E+01	1.251E+04	4.931E+01
2078	4.636E+03	2.533E+06	5.100E+03	4.394E+01	1.226E+04	4.833E+01
2079	4.544E+03	2.482E+06	4.999E+03	4.307E+01	1.202E+04	4.737E+01
2080	4.454E+03	2.433E+06	4.900E+03	4.222E+01	1.178E+04	4.644E+01
2081	4.366E+03	2.385E+06	4.803E+03	4.138E+01	1.154E+04	4.552E+01
2082	4.280E+03	2.338E+06	4.707E+03	4.056E+01	1.132E+04	4.462E+01
2083	4.195E+03	2.292E+06	4.614E+03	3.976E+01	1.109E+04	4.373E+01

Veer	Carbon dioxide		NMOC			
rear	(Mg/year)	(m³/year)	(short tons/year)	(Mg/year)	(m³/year)	(short tons/year)
2084	4.112E+03	2.246E+06	4.523E+03	3.897E+01	1.087E+04	4.287E+01
2085	4.030E+03	2.202E+06	4.433E+03	3.820E+01	1.066E+04	4.202E+01
2086	3.950E+03	2.158E+06	4.346E+03	3.744E+01	1.045E+04	4.119E+01
2087	3.872E+03	2.115E+06	4.259E+03	3.670E+01	1.024E+04	4.037E+01
2088	3.796E+03	2.074E+06	4.175E+03	3.597E+01	1.004E+04	3.957E+01
2089	3.720E+03	2.032E+06	4.092E+03	3.526E+01	9.837E+03	3.879E+01
2090	3.647E+03	1.992E+06	4.011E+03	3.456E+01	9.642E+03	3.802E+01
2091	3.575E+03	1.953E+06	3.932E+03	3.388E+01	9.451E+03	3.727E+01
2092	3.504E+03	1.914E+06	3.854E+03	3.321E+01	9.264E+03	3.653E+01
2093	3.434E+03	1.876E+06	3.778E+03	3.255E+01	9.081E+03	3.580E+01
2094	3.366E+03	1.839E+06	3.703E+03	3.191E+01	8.901E+03	3.510E+01
2095	3.300E+03	1.803E+06	3.630E+03	3.127E+01	8.725E+03	3.440E+01
2096	3.234E+03	1.767E+06	3.558E+03	3.065E+01	8.552E+03	3.372E+01
2097	3.170E+03	1.732E+06	3.487E+03	3.005E+01	8.383E+03	3.305E+01
2098	3.108E+03	1.698E+06	3.418E+03	2.945E+01	8.217E+03	3.240E+01
2099	3.046E+03	1.664E+06	3.351E+03	2.887E+01	8.054E+03	3.176E+01
2100	2.986E+03	1.631E+06	3.284E+03	2.830E+01	7.895E+03	3.113E+01
2101	2.927E+03	1.599E+06	3.219E+03	2.774E+01	7.738E+03	3.051E+01
2102	2.869E+03	1.567E+06	3.156E+03	2.719E+01	7.585E+03	2.991E+01
2103	2.812E+03	1.536E+06	3.093E+03	2.665E+01	7.435E+03	2.931E+01
2104	2.756E+03	1.506E+06	3.032E+03	2.612E+01	7.288E+03	2.873E+01
2105	2.702E+03	1.476E+06	2.972E+03	2.560E+01	7.143E+03	2.817E+01
2106	2.648E+03	1.447E+06	2.913E+03	2.510E+01	7.002E+03	2.761E+01
2107	2.596E+03	1.418E+06	2.855E+03	2.460E+01	6.863E+03	2.706E+01
2108	2.544E+03	1.390E+06	2.799E+03	2.411E+01	6.727E+03	2.652E+01
2109	2.494E+03	1.362E+06	2.743E+03	2.364E+01	6.594E+03	2.600E+01
2110	2.445E+03	1.335E+06	2.689E+03	2.317E+01	6.463E+03	2.548E+01
2111	2.396E+03	1.309E+06	2.636E+03	2.271E+01	6.335E+03	2.498E+01
2112	2.349E+03	1.283E+06	2.584E+03	2.226E+01	6.210E+03	2.449E+01
2113	2.302E+03	1.258E+06	2.532E+03	2.182E+01	6.087E+03	2.400E+01
2114	2.257E+03	1.233E+06	2.482E+03	2.139E+01	5.967E+03	2.353E+01
2115	2.212E+03	1.208E+06	2.433E+03	2.096E+01	5.848E+03	2.306E+01
2116	2.168E+03	1.184E+06	2.385E+03	2.055E+01	5.733E+03	2.260E+01
2117	2.125E+03	1.161E+06	2.338E+03	2.014E+01	5.619E+03	2.216E+01
2118	2.083E+03	1.138E+06	2.291E+03	1.974E+01	5.508E+03	2.172E+01
2119	2.042E+03	1.115E+06	2.246E+03	1.935E+01	5.399E+03	2.129E+01
2120	2.001E+03	1.093E+06	2.202E+03	1.897E+01	5.292E+03	2.087E+01
2121	1.962E+03	1.072E+06	2.158E+03	1.859E+01	5.187E+03	2.045E+01
2122	1.923E+03	1.050E+06	2.115E+03	1.822E+01	5.084E+03	2.005E+01
2123	1.885E+03	1.030E+06	2.073E+03	1.786E+01	4.984E+03	1.965E+01

APPENDIX B

Operating Permit Application Forms

090PR0329

Title V Operating Permit Application Form

This form must be included with any application submittal to the Title V Operating Permit Unit

Title V Operating Permit Number: Plant AIRS ID Number: 107 - 0057

1. Instructions

Included on the Colorado Air Pollution Control Division Website is an instruction sheet (Form OP-50A) for this application form. Refer to the instruction sheet or contact the Division with questions. Attach a cover letter describing the purpose of the application package if more room is needed. Any form with missing information may be determined administratively incomplete and may result in inability to grant the application shield of Regulation No. 3, Part C, Section II.B. Note that if using copy and paste; the applicant must paste as plain text. See "General Instructions" document for more details.

2. P	2. Permit Application Type (check all that apply)				
	Initial	\boxtimes	Renewal - Identify any requested changes below or in a cover letter.		
	Significant Modification		Administrative Modification (e.g. transfer of ownership, correct typographical error, etc.)		
	Minor Modification - The Minor Modification worksheet (Form OP-201) must also be completed if a source wishes to use the procedures under Colorado Regulation No. 3, Part C, Section X.				
	Notification of Construction Permit Exempt Unit (APCD PS Memo 09-01, Scenario #7)		Title V Billing Contact Update		
Responsible Official Update Supplemental Information (d Click here to enter te		Supplemental Information (describe): Click here to enter text.			
	Other (describe): Click here to enter text.				

3. General Description - Include brief description describing the purpose of the application package. If more detail is needed, provide in cover letter.

General Description of package	The purpose of this application package is to renew the existing Title V Permit. In general, emission sources are being renewed as-is with no changes. The solidification basin is being removed. See additional detail in the application narrative.
l	

4. Additional Information

A. Initial and Renewal Applications

⊠ Check this box if you are submitting an initial or renewal application. For all other application types, proceed to Section 4.B.

If you are submitting an initial or renewal application, provide the application due date. See Colorado PS-Memo 09-01 for help with Title V Operating Permit application due dates.

Application Due Date: August 1, 2020

Basis for Application Due Date (Initial Permits Only): Click here to enter text.

B. APEN Attachments

Enclose a copy of the most current complete Air Pollution Emission Notice(s) (APENs) on file with the Division. New/revised APENs are required if the facility is requesting a modification that requires a new APEN or changes information on a previously submitted APEN.

□ New or Revised APENs have been included with this submittal (filing fees must be included)

⊠ <u>Required</u> - Copies of all applicable APENs have been included (no filing fees are needed for these APEN copies).

C. Confidential/Trade Secret Information

Check the following box if any confidential/trade secret information has been submitted with this application. The pages including confidential information must clearly be labeled as confidential.

See PS Memo 98-01 for acceptable confidential information submittals.

□ This application includes confidential information on the following pages: Click here to enter text.

D. Submittal

The Division is requiring one hardcopy submittal mailed to the APCD (with any wet signatures required; see instruction documents for details) and one electronic copy submittal emailed to APCD. The electronic submittal MUST be submitted in word format (either .doc or .docx) to <u>cdphe_apcd_title_V@state.co.us</u>. For legal purposes, the date the signed hardcopy is received by the Division is considered the date received, <u>not</u> when the electronic copy is emailed.

E. Oil and Gas Sources

If this facility is associated with Oil & Gas activities, Form OP-202 must be completed if the facility is submitting an initial application or the facility is requesting changes to oil and gas equipment and must be submitted for the application to be considered complete. Oil and Gas SIC codes include, but are not limited to, 1311, 1321, and 4922.

 \Box Form OP-202 has been included with this application.

☑ This facility is not an oil and gas facility, and/or the facility is not requesting any changes to the oil and gas equipment.

F. Modeling

If an emission unit will have to go through modeling as part of a permit action, OP-204 must be completed and attached to the corresponding OP-300 series form. If the applicant has already filled out the optional air quality modeling form as part of the modeling process, the applicant may attach that form in lieu of OP-204. For information about the modeling process, see the page titled "Air Quality Modeling Guidance for Permits" on the Division webpage.

□ Form OP-204 has been completed and attached.

 \Box A copy of the optional air quality modeling form has been attached.

This facility did not trigger modeling requirements.

5. Signature of Responsible Official

A. Statement of Completeness

 \boxtimes I have reviewed this application in its entirety and, based on information and belief formed after reasonable inquiry, I certify that the statements and information contained in this application are true, accurate and complete.

B. Certification of Facility Compliance Status With Federal and State Enforceable Conditions

☑ I certify that the facility described in this air pollution permit application is fully in compliance with all applicable requirements, including compliance certification requirements and any applicable compliance assurance monitoring.

 \Box I certify that the facility described in this air pollution permit application is fully in compliance with all applicable requirements, except for the following emissions unit(s) identified below: Click here to enter text.

C. Certification of Facility Compliance Status With State-Only Enforceable Conditions

 \Box I certify that the facility described in this air pollution permit application is fully in compliance with all applicable requirements.

 \boxtimes I certify that the facility described in this air pollution permit application is fully in compliance with all applicable requirements, except for the following emissions unit(s) identified below: Permit Section IV, Item 19 requires that operating permit renewal applications must be submitted at least 12 months prior to expiration. This application was not submitted prior to the deadline. The resolution to this deviation is submission of this application. This deviation has not yet been reported because the deviation did not occur until August 1, 2020 for which a compliance report has not yet come due. (Regulation No. 3,5 CCR 1001-5, Part C, §§ III.B.6., IV.C., V.C.2.)

WARNING: Any person who knowingly, as defined in § 18-1-501(6), C.R.S., makes any false material statement, representation, or certification in, or omits material information from this application is guilty of a misdemeanor and may be punished in accordance with the provisions of § 25-7 122.1, C.R.S.

Responsible Official Name or Other ¹	Luke Schneider
Title	Compliance Officer
Signature ²	Aut the
Date	10/5/20

¹For the following applications, a signature of a Legally Authorized Person (not a vendor or consultant) is acceptable: Notification of Construction Permit Exempt Unit, Billing contact update, Responsible Official update, and Supplemental Information submittal. For these application types, a Legally Authorized Person must only certify with Section 5.A (5.B and 5.C certifications are not needed).

²This document requires a "wet signature," electronic signatures will not be accepted.

SEND MATERIALS TO:

Colorado Dept. of Public Health & Environment APCD-SS-B1 ATTN: Title V Unit Supervisor

Form Revised March 2020

Page | 3 of 4

COLORADO Department of Public Health & Environment

090PR0329

General Facility & Contact Information Form

Title V Operating Permit Number: Plant AIRS ID Number: 107 - 0057

1. Instructions

Included on the Colorado Air Pollution Control Website is an instruction sheet (Form OP-100A) for this application form. Refer to the instruction sheet or contact the Division with questions. Any form with missing information may be determined administratively incomplete and may result in inability to grant the application shield of Regulation No. 3, Part C, Section II.B. Note that if using copy and paste; the applicant must paste as plain text. See "General Instructions" document for more details.

2. Facility Name and Physical Address			
Company Name	Twin Landfill Corporation		
Facility Name	Milner Landfill		
Address 1	20650 RCR 205		
Address 2	Enter the facility physical address (No PO Boxes).		
City	Milner		
County	Routt		
State and Zip Code	CO 80487		

3. Parent Company Name and Mailing Address			
Name	Twin Landfill Corporation		
Address 1	P.O. Box 774362		
Address 2	Enter Parent Facility Address line 2, if applicable.		
City	Steamboat Springs		
State and Zip Code	CO 80477		

4.	Billing/Accounts	Payable for	Title V Operating Permit Fees
----	------------------	-------------	-------------------------------

Invoices are issued quarterly to recover costs associated with processing Title V Operating Permit applications. The Division may send invoices via email and/or US Mail. Update the contact information immediately upon any change to avoid additional penalties due to nonpayment. Billing contact information for other Division fees can be updated via an Air Pollution Emission Notice (for hourly fees associated with construction permit processing) or by following the instructions on the annual emission fee invoice for fees associated with annual pollutant emissions.

Contact Name	Luke Schneider
Title	Compliance Officer
Email	lschneider @twinenviro.com
Telephone	(970) 879-6985
Address	P.O. Box 774362 Steamboat Springs, CO 80477

5. Responsible Official - See instruction sheet for information on Responsible Official requirements.			
Name	Luke Schneider		
Title	Compliance Officer		
Email	Ischneider@twinenviro.com		
Telephone	(970) 879-6985		
Address	P.O. Box 774362 Steamboat Springs, CO 80477		

6. Permit Contact Person					
Name	Luke Schneider				
Title	Compliance Officer				
Email	lschneider@twinenviro.com				
Telephone	(970) 879-6985				
Address	P.O. Box 774362 Steamboat Springs, CO 80477				

7. Correspondence Options - Select the correspondence option associated with the processing of the Title V Operating Permit for the facility.

⊠ Permit Contact Person Only

□ Copy Responsible Official (formal letters only)

□ Copy Responsible Official (include all files, draft permits, etc.)

□ Provide additional copies to others (attach contact information, including email addresses)

8. Faci	8. Facility Information							
A.	Business Activity of facility:	Solid Waste Land	Solid Waste Landfill					
Β.	SIC Code:	4953	4953 C. NAICS Code: 562212					
D.	ls the facility located in a nonattainment area?	🗆 Yes 🖾 No	E. If yes on D, check the designated nonattainment pollutant(s)	$\square CO \square Ozone \square PM_{10}$ $\square Other (specify): Click$ here to enter text.				
F.	ls this facility subject accidental release of h 112(r)(7) of the Clean	to the provisions g nazardous air pollu Air Act?:	overning prevention of tants contained in section	□ Yes ⊠ No If yes, has a RMP been registered? □ Yes □ No				
G.	Is the facility subject to the Acid Rain Provisions of Title IV?	□ Yes 🖾 No	H. If yes on G, is a complete new or renewal Acid Rain permit application included?	□ Yes □ No				

9. List of Permits - List all (Federal and State) air pollution permits (including grandfathered units), plan approvals and exemptions issued to this facility. This section includes construction permits already incorporated and construction permits that need to be incorporated into the operating permit. List the number, date, and what unit/process is covered by each permit. Attach additional pages if necessary.

Permit Number	Date Last Issued	Units/Processes Covered by Permit
18RO0850.XP	03/20/2019	Composting Operation Exemption
O9OPRO329	08/01/2016	Operating permit for Landfill Operations
O2RO0124	03/19/2008	Construction permit for Landfill Operations
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.
Enter Number.	Click here to enter text.	Click here to enter text.

10. Prevention of Significant Deterioration (PSD) and Non-Attainment New Source Review (NANSR)

A.	Is this facility a listed source for the purposes of Prevention of Significant Deterioration (PSD) for which the source would be considered major at 100 tons per year? (See Colorado Regulation 3 Part A Section II.A.25.a.(i))	□ Yes ⊠ No If yes, describe: Click here to enter text.
В.	Is this facility a major stationary source for the purposes of the Prevention of Significant Deterioration (PSD) program? (Potential to Emit \geq 250 Tons/Year or 100 Tons/Year if listed source)	☐ Yes ⊠ No If yes, enter pollutants: Click here to enter text.
C.	Is this facility a major stationary source for the purposes of the Non- Attainment New Source Review (NANSR) program? (Potential to Emit above thresholds listed in Colorado Regulation 3, Part D, Section II.A.25.b)	☐ Yes ⊠ No If yes, enter pollutants: Click here to enter text.

11. Reporting

Facilities are required to submit semiannual Monitoring and Deviation reports and annual Compliance Certifications (these reports are included as appendices in the operating permit). For the calendar year reporting period (see below), reports are required by the end of the month following the end of the semiannual or annual periods respectively; e.g., Monitoring and Deviation reports would be due on July 31 and January 31, and the Compliance Certification would be due on January 31. The applicant may elect to alter the reporting date ranges below. Note that the requested reporting periods must be every 6 months for the Monitoring and Deviation report, and every 12 months for the compliance certification.

 \square *Calendar year periods as follows:

Monitoring and Deviation report: January 1 - June 30, July 1 - December 31

Compliance Certifications: January 1 - December 31

 \boxtimes Reporting periods will align with issued permit

i.e. if the operating permit is issued in May, annual compliance period will be May 1 - April 30

□ *Alternate reporting period (specify): Click here to enter text.

*Note that if the applicant selects one of these options and the permit is issued on any month other than January or July, there will be shortened reporting periods to "catch up" to the default period. The applicant will be informed of any shortened periods with the issuance letter.

Department of Public Health & Environmen

Source and Site Description

Title V Operating 090PR0329 Permit Number:

Plant AIRS ID Number: 107 - 0057

1. Instructions

Included on the Colorado Air Pollution Control Website is an instruction sheet (Form OP-101A) for this source and site description form. Refer to the instruction sheet or contact the Division with questions. Any form with missing information may be determined administratively incomplete and may result in inability to grant the application shield of Regulation No. 3, Part C, Section II.B. Renewal and modification applications for equipment already included in the Title V permit are allowed to only complete portions of the form affected by the modification. Note that if using copy and paste; the applicant must paste as plain text. See "General Instructions" document for more details.

2. Site Description

Describe the units to be permitted and the activities at the facility. If additional space is needed, attach an additional description.

The Milner Landfill is an MSW landfill, SIC 4953, located in Routt County, Colorado. The Landfill emits landfill gas and fugitive particulate emissions generated from activities at the landfill. The facility includes a compost opeation with engines used for screening and grinding composting material. A liquid waste solidification basin was historically operated, but ceased operation October 2019 and should be removed from the Operating Permit.

3. Site Information								
Site Location Description	Site Location DescriptionThe facility is located at 20650 RCR 205 in Routt County, approximately 1.2 miles southwest of Milner, Colorado.							
(Include instructions needed to drive to remote sites not identified by street addresses)								
Neighboring state(s) and Tribal		Arizona		Nebraska				
programs within a 50 mile radius		Utah		Kansas				
of the facility (check all that		New Mexico						
apply)		Southern Utes		Texas				
		Mount Zirkel Wilderness		Rawah Wilderness				
Class I and II Federal areas within	\boxtimes	Flat Tops Wilderness		Rocky Mountain National Park				
facility (check all that apply)		West Elk Wilderness		Eagles Nest Wilderness				
		La Garita Wilderness		Maroon Bells Snowmass Wilderness				
To find this information, use the link to the data viewer provided in the instruction sheet.		Mesa Verde National Park		Black Canyon of the Gunnison Wilderness				
		Great Sand Dunes National Park		Weminuche Wilderness				
		Florissant Fossil Beds National Monument		Great Sand Dunes National Preserve				
		Dinosaur National Monument		Colorado National Monument				
Form Revised March 2020		Page 1 of 2						

	Uncompandere Mountain		Wilson Mountain		
Required Safety Equipment (check all that apply)	Hard Hat	\boxtimes	Hearing Protection		
	⊠ Safety Shoes		Flame Retardant Clothing		
	⊠ Gloves		H2S Monitor		
	☑ Eye Protection		Other (describe): Click here to enter text.		
	Is this facility collocated with another facility? \Box Yes $oxtimes$ No				
Collocation Information	If yes, list other facility operating permit number(s) (if applicable) and AIRS ID(s): Click here to enter text.				

4. Required Attachments - The following must be attached in order for the application to be considered administratively complete:

Security Plot Plan (plan view) - The Division will not accept blueprint sized drawings

- Include all buildings occupied by or located on the site of the facility and any outdoor process layout
- Identify location of emission units

⊠ Process Flow Diagram (PFD) (if applicable)

• Identify emission units

Insignificant Activities

Title V Operating Permit Number:090PR0329Pla	ant AIRS ID Number:	107 - 0057
---	------------------------	------------

1. Instructions

Included on the Colorado Air Pollution Control Website is an instruction sheet (Form OP-105A) for this insignificant activities form. Refer to the instruction sheet or contact the Division with questions.

Review the exemptions listed and determine if any of the insignificant activities described operate at the facility. In the "additional information" column, using the checkboxes, indicate "Yes" or "No" if this insignificant activity operates at the facility. If "Yes", complete any additional questions that and/or fill out any associated tables. If more space is needed in the table(s), attach additional information.

Note that the Operating Permit exemptions listed below do not apply if the emission unit is subject to any specific federal or state applicable requirements such as a New Source Performance Standard (NSPS), National Emission Standard for Hazardous Air Pollutants (e.g. MACT), and/or Colorado Regulation No. 7. Units subject to specific federal or state applicable requirements must submit the proper application forms and have the applicable requirements reflected in the Operating Permit. See Colorado Regulation No. 3, Part C, Section II.E for more details.

Potential to Emit (PTE) for insignificant activities is typically estimated using the maximum design/emission rate of the emission unit operating at 8760 hours per year, or 500 hours/year for emergency engines. Note that if using copy and paste; the applicant must paste as plain text. See "General Instructions" document for more details.

2. Exemptions

2.A. Starred Insignificant Activities

Sources are required to include a list of insignificant activities in their permit applications if the insignificant activities are marked with an asterisk in Colorado Regulation No. 3, Part C, Section II.E. The asterisk denotes an insignificant activity source category based on the size of the activity, emissions levels from the activity or the production rate of the activity. The owner or operator of individual these emission points must maintain sufficient record keeping verifying that the exemption applies.

Insignificant Activity	Regulatory Citation	Additional Information					
		🖂 Yes 🗆 No					
*Units with emissions less than	Regulation 3 Part C.II.E.3.a	Name of Unit	PTE (indicate highest pollutant only)	Location			
		1,000-gal methanol AST	VOC/Methyl alcohol: 187 lb/yr	See Figure 2			
APEN de minimis - criteria		Unit	Example- VOC: 50 lbs/yr	Location			
pollutants.		Unit	PTE	Location			
		Unit	PTE	Location			
		Unit	PTE	Location			
		Unit	PTE	Location			
		Unit	PTE	Location			

		□ Yes ⊠ No				
*Daaaansh labaastaniaa	Regulation	*If yes, is it of a small pilot scale and that process less than ten thousand pounds of test material per year? □ Yes □ No				
Research laboratories.	C.II.E.3.i	*If yes, is it less than six months in duration with controlled actual emissions less than five hundred pounds of any criteria pollutant or ten pounds of any non-criteria reportable pollutant?				
*Disturbance of surface areas						
for purposes of land development, that do not exceed twenty-five contiguous acres and that do not exceed six months in duration.	Regulation 3 Part C.II.E.3.j	Describe: Click here to enter text.				
		□ Yes ⊠ No				
*Each individual piece of fuel		Name of Unit	Design Rate (MMBtu/hr)	Location		
smokehouse generators and	Regulation	Unit	Capacity	Location		
internal combustion engines,	3 Part C.II.E.3.k	Unit	Capacity	Location		
that has a design rate less than		Unit	Capacity	Location		
or equal to five million British		Unit	Capacity	Location		
thermai units per nour.		Unit	Capacity	Location		
		Unit	Capacity	Location		
*Petroleum industry flares, not			🗆 Yes 🛛 No			
combusting natural gas containing no hydrogen sulfide except in trace amounts, approved by the COGCC and having uncontrolled emissions of any pollutant of less than five tons per year.	Regulation 3 Part C.II.E.3.m	Describe: Cl	Describe: Click here to enter text.			
*Chemical storage tanks or			□ Yes 🛛 No			
containers that hold less than five hundred gallons, that have		Chemical Storage Tanks	Capacity (gal)	Location		
an annual average throughput less than twenty-five gallons	Regulation	Unit	Capacity	Location		
per day, and are not	3 Part	Unit	Capacity	Location		
associated with either oil and	C.II.E.3.n	Unit	Capacity	Location		
commercial facilities that		Unit	Capacity	Location		
accept oil production		Unit	Capacity	Location		
wastewater for processing.		Unit	Capacity	Location		

*Landscaping and site housekeeping devices equal to or less than ten horsepower in size (lawnmowers, trimmers, snow blowers, etc.).	Regulation 3 Part C.II.E.3.bb	□ Yes ⊠ No					
*Crude oil loading truck				🗆 Yes 🛛 No)		
equipment at exploration and production sites where the loading rate does not exceed 10,000 gallons of crude oil per day averaged on an annual basis. Condensate truck loading equipment at exploration and production sites that splash fill less than 6750 barrels of condensate per year or that submerge fill less than 16308 barrels of condensate per year.	Regulation 3 Part C.II.E.3.ee	Describe: Click here to enter text.					
		🗆 Yes 🛛 No					
*Chemical storage areas where chemicals are stored in closed containers, and where total storage capacity does not		Chemical Storage Areas		Capacity (gal)		Location	
	Regulation 3 Part C.II.E.3.mm	Unit		Capacity		Location	
		Unit		Capacity		Location	
		Unit		Capacity		Location	
exceed five thousand ganons.		Unit		Capaci	ty	Location	
		Unit		Capaci	ty	Location	
		Unit		Capaci	ty	Location	
*Venting of compressed natural	Regulation			🗆 Yes 🖂 No)		
gas, butane or propane gas cylinders, with a capacity of one gallon or less.	3 Part C.II.E.3.bbb	Desc	ribe: Cl	ick here to	enter t	ext.	
*Fuel storage and dispensing				\Box Yes \boxtimes No)		
attainment areas operated solely for company-owned vehicles where the daily fuel		Equipment	Daily Fuel Throughput (gal/day)		Fuel Type	Location	
throughput is no more than		Unit	Th	roughput	Туре	Location	
tour hundred gallons per day, averaged annually. Sources in	Regulation	Unit	Th	roughput	Туре	Location	
an ozone	3 Part C.II.E.3.ccc	Unit	Th	roughput	Type	Location	
attainment/maintenance area must utilize Stage 1 vapor	5.III.E. 0.000	Unit	Th	roughput	Type	Location	
recovery on all tanks greater		Unit	Th	roughput	Туре	Location	
than five hundred and fifty		Unit	Th	roughput	Туре	Location	
by Regulation Number 7, in order to take this exemption.		Is the equipment subject to NESHAP CCCCCC?					
*Storage tanks meeting all of	Regulation	\boxtimes Yes \square No					

COLORADO Air Pollution Control Division Department of Public Health & Envronment

the following criteria: (1) Annual throughput is less than four hundred thousand gallons; and	3 Part C.II.E.3.fff	TankCapacity (gal)Throughput (gal/yr)Type of Liquid Stored		Location			
 (2) The liquid stored is one of the following: (i) Diesel fuels 1-D, 2-D, or 4-6; (ii) Fuel oils #1 - #6; 		Off- road diesel AST	200	00	24,000	diesel	See Figure 2
 (iii) As turbine fuels 1 - G1 through 4 - GT; (iv) An oil/water mixture with a vapor pressure less than or equal to that of diesel fuel 		On- road diesel AST	200	00	24,000	diesel	See Figure 2
(Reid vapor pressure of .025		Unit	Capac	city	Throughput	Туре	Location
psia).		Unit	Capac	city	Throughput	Туре	Location
		Unit	Capac	city	Throughput	Туре	Location
		Unit	Capac	city	Throughput	Туре	Location
		Unit	Capac	city	Throughput	Type	Location
		Unit	Capac	city	Throughput	Туре	Location
*Surface mining activities that		□ Yes 🛛 No					
fewer of product material per year. A fugitive dust control plan is required for such sources. Crushers, screens and other processing equipment activities are not included in this exemption.	Regulation 3 Part C.II.E.3.qqq	Describe: Click here to enter text.					
		Note t Regula	hat if y ation 3	'ou ha' Part C	ve filled out the C.II.E.3.nnn belo this list	e engine e ow do not	exemption in duplicate in
		Do you have engines that are less than or equal to 175 horsepower which operate less than 1,450 hours per year? □ Yes ⊠ No					
*Stationary internal combustion engines.	Regulation 3 Part C.II.E.3.xxx	Do you have engines that are greater than 175 horsepower and less than or equal to 300 horsepower which operate less than 850 hours per year? □ Yes ⊠ No					
		Do you and less	Do you have engines that are greater than 300 horsepower and less than or equal to 750 horsepower which operate less than 340 hours per year? □ Yes ⊠ No				
		Name of	f Unit	P	TE (indicate hig pollutant only	ghest y)	Horsepower

COLORADO Air Pollution Control Division Department of Public Health & Environment

		Unit	Example	- NOx: 100 ps/yr	Horsepower		
		Unit	Example	Example- NOx: 100 lbs/yr			
		Unit		PTE			
		Unit		PTE	Horsepower		
		Unit		PTE	Horsepower		
		Are any of th	ese engines sub or NS □ Y	oject to NESHAP Z PS JJJJ? es □ No	ZZZ, NSPS IIII,		
		Does your f exceed t	facility have sulf en thousand five Ye	furic acid storage e hundred gallons es ⊠ No	tanks not to capacity?		
		Does your	facility have soc	lium hydroxide sto	prage tanks?		
			□ Y	es 🖂 No			
*Chemical storage tanks	Regulation 3 Part C.II.E.3. eeee	Tanks	Capacity (gallons)	Type of Liquid Stored	Location		
ononnour storage tanks.		Unit	Capacity	Type	Location		
		Unit	Capacity	Туре	Location		
		Unit	Capacity	Туре	Location		
		Unit	Capacity	Туре	Location		
		Unit	Capacity	Туре	Location		
		Unit	Capacity	Туре	Location		
		□ Yes ⊠ No					
*Any condensate storage tank		Tanks	Through	out (bbl/yr)	Location		
with a production rate of 730 barrels per year or less or		Unit	Thro	ughput	Location		
condensate storage tanks that	Regulation	Unit	Thro	ughput	Location		
are manifold together with a production rate of 730 barrels	3 Part	Unit	Thro	ughput	Location		
per year or less that are owned	C.II.E.3.	Unit	Thro	ughput	Location		
and operated by the same	9999	Unit	Thro	ughput	Location		
exploration and production		Unit	Throughput		Location		
sites.		Are any of these tanks subject to NSPS K, Ka, or Kb?					
2.B. Common Insignificant Activ	vities						
The Division strongly suggests reprequired to complete this section at the facility. If "Yes", complete	porting the foll n. Using the che e any additiona	owing common eckboxes, indic al questions tha	insignificant ac ate "Yes" if this t and/or fill out	tivities. However, insignificant acti any associated ta	it is not vity operates ables.		
Units with emissions less than	Regulation		\geq	Yes			
APEN de minimis - non-criteria pollutants.	3 Part C.II.E.3.b	Name of Unit	PTE (indic polluta	cate highest ant only)	Location		
Form Revised March 2020 Page 5 of 8							

COLORADO Air Pollution Control Division Department of Public Health & Environment

		1,000-gal methanol AST	Methanol: 187 lb/yr	See Figure 2
		Unit	Example- Acrolein: 50 lbs/yr	Location
		Unit	PTE	Location
		Unit	PTE	Location
		Unit	PTE	Location
Fireplaces used for recreational purposes, inside or outside.	Regulation 3 Part C.II.E.3.d		□ Yes	
Emissions from, or construction, or alteration of residential structures, including all buildings or other structures used primarily as a place of residence, and including home heating devices.	Regulation 3 Part C.II.E.3.h	□ Yes		
Internal combustion engines powering portable drilling rigs.	Regulation 3 Part C.II.E.3.I	□ Yes		
Open burning activities.	Regulation 3 Part C.II.E.3.q	□ Yes		
Aerosol can usage.	Regulation 3 Part C.II.E.3.u	□ Yes		
Storage of butane, propane, or liquefied petroleum gas in a vessel with a capacity of less than sixty thousand gallons, provided the requirements of Regulation Number 7, Section IV (<i>now Part B, Section II</i>) are met, where applicable.	Regulation 3 Part C.II.E.3.zz	⊠ Yes		
Storage tanks of capacity less than forty thousand gallons of lubricating oils or waste lubricating oils.	Regulation 3 Part C.II.E.3.aaa	⊠ Yes		
Each individual piece of fuel			⊠ Yes	
gaseous fuel, and that has a design rate less than or equal to ten million British thermal units per hour, and that is used solely for heating buildings for personal comfort.	Regulation 3 Part C.II.E.3.ggg	Describe: One 0.299 MMBtu/hr propane boiler located in the New Shop & One 0.324 MMBtu/hr propane boiler located in the Old Shop		

COLORADO Air Pollution Control Division Department of Public Health & Environment

		Note that if you have filled out the engine exemption in Regulation 3 Part C.II.E.3.xxx above do not duplicate in this list				
		Do you hav	ve power portable drilling Yes	rigs?		
		Do you have emerge more than tv	ency power generators that wo hundred fifty hours per	t operate no year?		
Stationary internal combustion	Regulation	Do you have engines less than five tons horse	that have uncontrolled ac per year or manufacturer power of less than fifty?	tual emissions 's site-rated		
engines.	3 Part C.II.E.3.nnn	Name of Unit	PTE (indicate highest pollutant only)	Horsepower		
		Unit	Example- NOx: 100 lbs/yr	Horsepower		
		Unit	Example- Acrolein: 50 lbs/yr	Horsepower		
		Unit	PTE	Horsepower		
		Unit	PTE	Horsepower		
		Are any of these engines subject to NESHAP ZZZZ, NSPS IIII, or NSPS JJJJ?				
			\Box Yes \Box No			
Gasoline stations located in ozone attainment areas.	Regulation 3 Part C.II.E.3.ppp		□ Yes			
Surface water storage impoundment of non-potable water and storm water evaporation ponds, with the exceptions of impoundment of oil and gas production wastewater (including produced water tanks) and commercial facilities that accept oil and gas production wastewater for processing.	Regulation 3 Part C.II.E.3.yyy		⊠ Yes			
Wet screening operations						
applicability of the New Source Performance Standards included in the Code of Federal Regulations, Title 40, Part 60, Subpart OOO.	Regulation 3 Part C.II.E.3.ffff	Are these screening operations subject to NSPS OOO?		NSPS 000?		

2.C. Other Insignificant Activities

Use the space below to report any other noteworthy insignificant activities that the facility would like listed in the permit. Include the name of the exemption, regulation citation (from Regulation 3 Part C Section II.E), name of unit, and any other information the facility would like to add. Attach additional pages as needed to report other insignificant activities.

	63.		
Compost Piles Asbestos acceptance in landfill	C.II.E.3.rrr C.II.E.2	Compost Piles Asbestos	Click here to enter additional information.

APPENDIX C

341926

MUNICIPAL SOLID WASTE LANDFILLS

Air Pollutant Emission Notice (APEN) - and- Application for Construction Permit

All sections of this APEN and application must be completed for both new and existing facilities, including APEN updates. An application with missing information may be determined incomplete and may be returned to you or result in longer engineer processing times. You will be charged an additional APEN fee if APEN is filled out incorrectly or missing information and requires re-submittal.

Requested Action:

New Landfill, Apply for	Transfer of Ownership ¹	Change Company	Change in Waste Acceptance
Construction Permit	APEN Update	Ivanie	Request Other Permit
Capacity			Modification

¹Note: For transfer of ownership or company name change, you must submit proof of ownership transfer (e.g., Transfer of Ownership Form signed by the previous owner or a copy of a Bill of Sale with this form).

PERMIT NUMBER:	02R00124	FACILITY AIRS ID:	107 0	0057 00)1
	0909R0329				
SECTION 01 - ADMIN	ISTRATIVE INFORMATION				
Landfill Name:	Twin Landfill Corporation	n - Milner Landfill	County	Routt	
Landfill Address:	20650 County Rd. 205				
	Steamboat Springs, CO	· · · · · · · · · · · · · · · · · · ·	Zip Code	: 80487	
Billing Address:	PO Box 774362				
	Steamboat Springs, CO		Zip Code	: 80477	
Person to Contact:	Luke Schneider		Phone Number	970-879-69	985
Contact Email Address:	lschneider@twinenviro.c	com	Fax Number	815-377-24	195
Landfill Owner:	Les Liman		Phone Number	:	
Address of Owner:	20650 County Rd. 205				
	Steamboat Springs, CO		Zip Code	: 80487	
Landfill Operator (if differen	nt) same		Phone Number		
Landfill Operator Address:					
			Zip Code	4	

SECTION 02 - GENERAL INFORMATION

Land	fill:	Approximate Date	Comments
	Commenced construction on (Existing):	1983	
	Will commence construction on (New):		
	Was closed on:		
	Projected closure date:		

MUNICIPAL SOLID WASTE LANDFILLS

SEC	TION 03 - DESIGN CAPAC	TTY INFORM	IATION			
Selec	et the appropriate scenario be	elow:				
	New or Previously unreported [] Complete the "Design Ca	landfill. pacity Report I	Form" and submit it v	with this APE	N.	
	[] Date the Certificate of D	esignation was	approved:			
	Change to a previously reporte [] Complete the "Design Ca	d design capac pacity Report I	ity. Form" and submit it v	vith this APE	N.	
	[] Date the Certificate of D	esignation was	approved:			
	No change to design capacity. [] Date the most recent Des	ign Capacity R	eport Form was subm	itted: Feb.	2009	
List t mass	he Landfill Design Capacity in 2:	both volume a	nd 7,623,062	m ³	4,430,967	Megagrams (Mg)
If you the ne	are reporting a change in desew capacity here ² :	ign capacity, lis	it	m ³		Megagrams (Mg)
² Calc	culate m 3 by multiplying yd 3 b	oy 0.7646. Calo	culate Mg by multiply	ing tons by 0	.907.	
Land	dfill is subject to (check al	l that apply):				
	NSPS Subpart Cc		NSPS WWW			
•	Title V		NESHAP Subpart /	АААА	□ ^{Oth}	er
SEC	TION 04 - WASTE ACC	EPTANCE II	NFORMATION			
This	landfill measures solid waste	acceptance in				
	Tons					
	Cubic yards (Specify Gate V	olume or In Pl	ace Volume):			
	Other (please explain):					

Specify the types of materials that are or would be accepted at the landfill. For each type, list the actual waste acceptance rate and the requested permit limit. (e.g., fly ash, petroleum contaminated soils, non-degradable material...)

Type of Materials Accepted (List)	Actual Annual Waste Acceptance Rate (include units) Reporting Year: 2014	Requested Annual Permit Acceptance Limit (include units)
Municipal Solid Waste	44,685 tons	175,000 tons/year

MUNICIPAL SOLID WASTE LANDFILLS

Beginning with the year the landfill opened, list the total waste acceptance amount for each year or submit the LandGEM waste acceptance data with this APEN. Specify units.

If any acceptance rates are estimated, attach documentation that demonstrates how acceptance rates were calculated.

Year	Waste Accepted	Year	Waste Accepted	Year	Waste Accepted
· · · · · · · · · · · · · · · · · · ·					
LandGEM	1 data has been submitted with	n this APEN.			

Note: The APCD is currently using AP-42 Section 2.4 to estimate landfill gas emissions. The Landfill Gas Emissions Model (LandGEM) is based on this AP-42 section and can be used to provide this information.

SECTION 05 – OTHER LANDFILL ACTIVITIES

Check appropriate box(es) below to indicate other activities and/or equipment at the landfill that may require submission of a separate APEN form.

	Composting (describe activity): Most recent APEN submittal was December 2012.
	Engine(s)/Generator(s) (specify type):
	Leachate (on-site use):
	Parts Washer (describe activity):
	Sand & Gravel Operations (describe activity):
_	Solidification Basin (describe activity):
	Most recent APEN submittal was February 2014.
	Other (specify activity/equipment):

SECTION 06 - FLARE INFORMATION (if not applicable mark N/A)

Type of Equipment ³	Equipment ID	Manufacturer	Make	Model Number	Serial No.
				_	
	5				

³ Submit additional sheets if necessary.

Fuel Type	Design Input Rate (10 ⁶ Btu/hr)	Actual Fuel Usage Level (for data year)	Fuel Heating Value (indicate units)
Landfill Gas			

MUNICIPAL SOLID WASTE LANDFILLS

SECTION 06- continued:

Flare Stack ID No.	Base Elevation (feet)	Discharge Height Above Ground Level (feet)	Temp. (°F)	Flow Rate (ACFM)	Velocity (ft/sec)	Moisture (%)

Horizontal Datum (NAD27, NAD83, WGS84)	UTM Zone (12 or 13)	UTM Easting or Longitude (meters or degrees)	UTM Northing or Latitude (meters or degrees)

Direction of outlet (check one):

Vertical

Vertical with obstruction rain cap

Horizontal

Down

Other

Exhaust Opening Shape & Size (check one):

Circular: Inner Diameter (inches) =

Other: Length (inches) = _____ Width (inches) = _____

MUNICIPAL SOLID WASTE LANDFILLS

SECTION 07 - EMISSIONS INVENTORY INFORMATION

Note: Attach a copy of LandGEM with this APEN form. Sources may have approved site-specific values based on performance testing; attach this information with the APEN form, if applicable.

Dellutant	Type of	Type of Overall Contro		EF	EF	Actual Calendar Year Emissions		Requested Emissions ⁴ (Permit Limits)	
Ponutant	Control Equipment	Collection Efficiency	ion Efficiency icy	(Include Units)	Source	Uncontrolled (tpy)	Controlled (tpy)	Uncontrolled (tpy)	Controlled (tpy)
PM	fugitive emissions control plan	NA	50%	/eter to engineering report	AP-42 13.2	40.1	20.1	156	78
PM-10	fugitive emissions control plan	NA	50%	refer to engineering report	AP-42 13.2	10.9	5.4	42.2	21.1
PM-2.5	fugitive emissions control plan	NA	50%	réfer to engineering (éport	AP-42 13.2	1.1	0.5	4.2	2.1
VOC	NA	NA	NA	NA	LandGEM	6.94	NA	15.21	NA
SO ₂ ⁵	NA	NA	NA	NA	NA	NA	NA	NA	NA
NOx ⁵	NA	NA	NA	NA	NA	NA	NA	NA	NA
CO	NA	NA	NA	NA	LandGem	1.2	NA	2.4	NA

MUNICIPAL SOLID WASTE LANDFILLS

(Report	fugitive emissi	ions and contro	ols at the land	dfill unde	er norm	al operating condition	is during the i	eporting ye	ear).
1. ONS	ITE HAULIN	G, AND LOA	DING/UNL	OADIN	G				
Vehi	cle Type	No. of Vehicles	Time (# vehicle	e Period es per mo	onth)	Loaded Vehicle Weight (tons)	Empty Ve Weigth (t	hicle ons)	Length of Haul Road One Way (feet)
Comme T	rcial Trash ruck	7,476	6	523		43	28		3,960 feet
P	rivate	NA		NA		NA	NA		NA
			-	-	_	A			
				_	-	11			
			List	t maximi	im post	ted speed limit on hau	l roads (miles	/hour):	15 mph
CONTR	OLS: (Check a	all that apply)							
	Watering				Gra	veled surfaces			
	Paved surfa	ices			Che	mical stabilizer			
	Other (Spec	cify):							
2. SOIL	HANDLING	REMOVAL							
Maximu	m: 3,500		tons p	er year					
CONTR	OLS: (Check a	all that apply)		1.1	-				
	Moist mate	erials			0.4	one (on asifu)			
3. DIST	URBED ARE	A			Tott	iers (specify)			
Total Ar	ea of Site (Act	res):	58	8.8					
Total Dis	sturbed Area o	of Site (Acres):	20	0					
CONTR	OLS:					1			
	Watering				Con	npaction			
	Revegetatio	n		Π	Othe	er (Specify):			

SECTION 09 - APPLICANT CERTIFICATION

an ul

Signature of Legally Authorized Person (not a vendor or consultant)

Marlin Mullet, Chief Executive Officer

Name (please print)

Title

12

Date

2015

Check the appropriate box if you want:

Copy of the Preliminary Analysis conducted by the Division

To review a draft of the permit prior to issuance

(Checking any of these boxes may result in an increased fee and/or processing time)

MUNICIPAL SOLID WASTE LANDFILLS

Send this form along with <u>\$152.90</u> to: Telephone: (303) 692-3150 Colorado Department of Public Health and Environment Air Pollution Control Division APCD-SS-B1 4300 Cherry Creek Drive South Denver, CO 80246-1530

The Small Business Assistance Program (SBAP) is available to help you complete this form. SBAP services are free and confidential. Please contact the SBAP if you need assistance at (303) 692-3175 or 3148.

NON-CRITERIA REPORTABLE AIR POLLUTANT EMISSION NOTICE ADDENDUM

(See reverse side for guidance on completing this form)

Permit Number:	02RO0124	A	IRS ID Number:	1070057001	1	
Company Name:	Twin Landfill Corporation - Milner Landfill					_
Plant Location:	20650 County Rd 205	County:	Routt	Zip Code:	80487	
Person to Contact:	Luke Schneider	Phone Number:	970-879-6985		-	_
E-mail Address:	lschneider@twinenviro.com	Fax Number:	815-377-2495	-		

Chemical Abstract Service (CAS) Number	Chemical Name	Control Equipment / Reduction (%)	Emission Factor (Include Units)	Emission Factor Source	Uncontrolled Actual Emissions (Ibs/year)	Controlled Actual Emissions (lbs/year)
71432	Benzene	NA	NA	LandGEM	497	NA
75092	Dichloromethane (me	NA	NA	LandGEM	681	NA
100414	Ethylbenzene	NA	NA	LandGEM	280	NA
110543	Hexane	NA	NA	LandGEM	326	NA
127184	Perchlorothylene (tet	NA	NA	LandGEM	351	NA
108883	Toluene	NA	NA	LandGEM	8972	NA
75014	Vinyl Chloride	NA	NA	LandGEM	261	NA
1330207	Xylenes	NA	NA	LandGEM	730	NA

DEC

1 4 2015

Calendar Year for which Actual Data Applies: 2014

Signature of Person Legally Authorized to Supply Data Marlin Mullet

1e

Name of Person Legally Authorized to Supply Data (Please print)

Date Chief Executive Officer

Title of Person Legally Authorized to Supply Data

GUIDANCE FOR NON-CRITERIA REPORTABLE AIR POLLUTANT EMISSION NOTICE ADDENDUM

Non-Criteria Reportable Air Pollutant Emission Notice Addendum: This form must be filed for each emission point (individual or grouped) that has uncontrolled actual emissions equal to or greater than <u>250 pounds per year</u> of any non-criteria reportable pollutant listed in Regulation 3, Appendix B.

Permit Number: For New Permit Applications leave this blank. For modifications to existing permits, please list the permit number previously issued by the APCD.

AIRS ID Number: For a new Air Pollutant Emission Notice (APEN) or new Permit Applications leave this blank. For modifications to existing APEN/permits, please list the emissions point AIRS ID number previously issued by the APCD.

Chemical Abstract Service (CAS) Number and Chemical Name: Please list the CAS number and common chemical name for each non-criteria reportable air pollutant that is emitted from this emission point. A list of CAS numbers and common chemical names may be found in Regulation 3, Appendix B. This can also be found on the chemical Safety Data Sheet (SDS)

Control Equipment / Reduction (%): Please list the type of control equipment used (i.e. SCR, NSCR, Flare, Thermal Oxidizer, etc.) and report the minimum percent reduction achieved by the control equipment.

Emission Factor: If applicable, please list the emission factor used to calculate the emission rates listed in the actual emission columns.

Emission Factor Source: Example emission factor sources include: AP-42, GRI HAP Calc., EPA TANKS, GRI GLY Calc., Manufacturer's Emission Factor, and Mass Balance.

Uncontrolled Actual Emissions: Enter the actual uncontrolled data year (projected first year emissions for new sources) emissions (lbs/year) from the reported emission point <u>excluding</u> any emission reduction achieved by control equipment.

Controlled Actual Emissions: If emissions are controlled, enter the actual controlled data year (projected first year emissions for new sources) emissions (lbs/year) from the reported emission point <u>including</u> the emission reduction listed in the "Control Equipment Reduction (%)" column. Enter "N/A" if the emissions are uncontrolled.

SUBMITTAL OF THIS ADDENDUM MUST BE ACCOMPANIED BY AN AIR POLLUTANT EMISSION NOTICE (APEN)

All sections of the APEN and Addendum must be completed for both new and existing facilities, including APEN updates. An application with missing information may be determined incomplete and may be returned to you or result in longer engineer processing times. Please note there is an APEN filling fee. You may be charged an additional APEN fee if the APEN or Addendum is filled out incorrectly or missing information and requires re-submittal.

Copies of this form may be obtained on the Internet under Construction Permit Forms and APENS: http://www.colorado.gov/cdphe/apcd

General APEN - Form APCD-200

Air Pollutant Emission Notice (APEN) and Application for Construction Permit

All sections of this APEN and application must be completed for both new and existing facilities, including APEN updates. An application with missing information may be determined incomplete and may be returned or result in longer application processing times. You may be charged an additional APEN fee if the APEN is filled out incorrectly or is missing information and requires re-submittal.

There may be a more specific APEN for your source (e.g. paint booths, mining operations, engines, etc.). A list of specialty APENs is available on the Air Pollution Control Division (APCD) website at: www.colorado.gov/cdphe/apcd.

This emission notice is valid for five (5) years. Submission of a revised APEN is required 30 days prior to expiration of the five-year term, or when a reportable change is made (significant emissions increase, increase production, new equipment, change in fuel type, etc). See Regulation No. 3, Part A, II.C. for revised APEN requirements.

Permit Number:	18 PO 850 090 PR0329	IRS ID Number: 1	005 07 /0057 / 001	
	[Leave blank unless APCD has already assigned	d a permit # and AIRS I	D]	
Section 1 - Ad	ministrative Information			
Company Name ¹ :	Twin Landfill Corporation			
Site Name:	Milner Landfill			
Site Location:	1.2 mi SW of Milner and 12 mi W of	Site Location County:	Routt	
	Steamboat Springs on US Hwy 40		1	
		NAICS or SIC Code:	562212	
Mailing Address: (Include Zip Code)	P.O. Box 774362			
	Steamboat Springs, CO 80477	Permit Contact:	Luke Schneider	
		Phone Number:	970-879-6985	
Portable Source Home Base:		E-Mail Address ² :	Lschneider@twinenviro.con	

¹ Use the full, legal company name registered with the Colorado Secretary of State. This is the company name that will appear on all documents issued by the APCD. Any changes will require additional paperwork.

² Permits, exemption letters, and any processing invoices will be issued by APCD via e-mail to the address provided.

372188

Perr	nit Numbe	r: 090PR0329	090PR0329		umber:	107	/0057)57 /001
		[Leave blank unle	ss APCD h	ias already assigned a permit #	and AIR	5 (D]		
Sec	tion 2- R	equested Action						
	NEW per	mit OR newly-reported em	ission so	urce (check one below)				
		TIONARY source [] POR	TABLE source				
				- OR -				
1	MODIFIC	ATION to existing permit (c)	heck each b	pox below that applies)				
	□ c	hange fuel or equipment		Change company name		Add poin	t to existing	g permi
	☑ C	hange permit limit		Transfer of ownership ³		Other (d	escribe belo	w)
				- OR -				
	APEN sub	omittal for update only (Bla	ank APEN	Ns will not be accepted)				
			- AD	DITIONAL PERMIT ACTIONS -				
	Limit Ha	zardous Air Pollutants (HA	Ps) with	a federally-enforceable li	imit on	Potential 7	To Emit (PT	E)
	APEN sut	omittal for permit exempt/	grandfat	thered source				
Add	itional Info	& Notor:						
Aud	nional inic	a Notes.						
							_	
For	transfer of	ownership, a completed Transf	er of Own	ership Certification Form (For	m APCD-	104) must be	e submitted.	
Sec	tion 3 - I	General Information						
Gen	eral descrip	ption of equipment and purp	oose:	Compostable orga	anic n	naterial	(feedsto	ock) i
oro	cessed i	nto a nutrient rich soi	amen	dment through micro	bial d	ecompo	sition.	
Man	ufacturer:	Мос	del No.:	Se	erial No	a		
Com	pany equip	oment Identification No. (op	tional):					
		urces operation began on:		44/4/0000				

Form APCD-200 - General APEN - Revision 1/2017

Normal Hours of Source Operation: 6

Seasonal use percentage:

For new or reconstructed sources, the projected start-up date is:

Dec-Feb:

Check this box if operating hours are 8,760 hours per year; if fewer, fill out the fields below:

hours/day 6

Mar-May:

Sep-Nov:

weeks/year

days/week 52

Jun-Aug:

Section 4 - Processing/Manufacturing Information & Material Use

Check box if this information is not applicable to source or process

From what year is the actual annual amount? 2016

	Description	Design Process Rate (Specify Units)	Actual Annual Amount (Specify Units)	Requested Annual Permit Limit ⁴ (Specify Units)
Material Consumption:	Feedstock	N/A	11,550 cubic yards	16,000 cubic yards
Finished Product(s):	Compost	N/A	2,890 cubic yards	4,000 cubic yards

⁴ Requested values will become permit limitations. Requested limit(s) should consider future process growth.

Section 5 - Stack Information

Geographical Coordinates (Latitude/Longitude or UTM)

40.474359, -107.039901

 \checkmark Check box if the following information is not applicable to the source because emissions will not be emitted from a stack. If this is the case, the rest of this section may remain blank.

Operator Stack ID No.	Discharge Height Above Ground Level (Feet)	Temp. (*F)	Flow Rate (ACFM)	Velocity (ft/sec)
	2			

Indicate the direction of the stack outlet: (check one)

Upward
Downward
Upward with obstructing raincap

Horizontal
Other (describe):

Indicate the stack opening and size: (check one)

Circular
Interior stack diameter (inches):

Square/rectangle
Interior stack width (inches):

Other (describe):

Section 6 - Combustion Equipment & Fuel Consumption Information

 \checkmark Check box if this information is not applicable to the source (e.g. there is no fuel-burning equipment associated with this emission source)

Design Input Rate	Actual Annual Fuel Use	Requested Annual Permit Limit ⁴
(MMBTU/hr)	(Specify Units)	(Specify Units)

From what year is the actual annual fuel use data?

Indicate the type of fuel used⁵:

Pipeline Natural Gas	(assumed fuel heatin	(assumed fuel heating value of 1,020 BTU/SCF)					
Field Natural Gas	Heating value: BTU/SCF						
🗌 Ultra Low Sulfur Diesel	(assumed fuel heatin	ng value of 13	8,000 BTU/gallon)				
Propane	(assumed fuel heatin	ng value of 2,	300 BTU/SCF)				
🗌 Coal	Heating value:	BTU/lb	Ash Content:	Sulfur Content:			
Other (describe):	1.1.1		Heating value (give	units):			

⁴ Requested values will become permit limitations. Requested limit(s) should consider future process growth.

⁵ If fuel heating value is different than the listed assumed value, provide this information in the "Other" field.

Section 7 - Criteria Pollutant Emissions Information

Attach all emission calculations and emission factor documentation to this APEN form.

Is any emission control equipment or practice used to reduce emissions? 🗌 Yes 📝 No

If yes, describe the control equipment AND state the overall control efficiency (% reduction):

Pollutant	Control Equipment Description	Overall Collection Efficiency	Overall Control Efficiency (% reduction in emissions)
TSP (PM)			
PM10			
PM _{2.5}			
SO _x			
NOx			
со			
VOC	_		
Other:	-		.1

Section 7 (continued)

From what year is the following reported actual annual emissions data? 2016

Use the following table to report the criteria pollutant emissions from source: (Use the data reported in Sections 4 and 6 to calculate these emissions.)

Delluterat	Uncontrolled Emission	Emission Factor	Actual Annua	al Emissions	Requested An Emission	nual Permit Limit(s) ⁴
Pollutant	Factor (Specify Units)	Source (AP-42, Mfg. etc)	Uncontrolled (Tons/year)	Controlled ⁶ (Tons/year)	Uncontrolled (Tons/year)	Controlled (Tons/year)
TSP (PM)	N/A	N/A	N/A	N/A	N/A	N/A
PM10	N/A	N/A	N/A	N/A	N/A	N/A
PM _{2.5}	N/A	N/A	N/A	N/A	N/A	N/A
SO _x	N/A	N/A	N/A	N/A	N/A	N/A
NOx	N/A	N/A	N/A	N/A	N/A	N/A
со	N/A	N/A	N/A	N/A	N/A	N/A
VOC	5.71 lbs/ton	APCD	16	0	23	6
Other:						

⁴ Requested values will become permit limitations. Requested limit(s) should consider future process growth.

⁶ Annual emission fees will be based on actual controlled emissions reported. If source has not yet started operating, leave blank.

Section 8 - Non-Criteria Pollutant Emissions Information

Does the emissions source have any uncontrolled actual emissions of non-criteria pollutants (e.g. HAP- hazardous air pollutant) emissions equal to or greater than 250 lbs/year?

Yes V No

If yes, use the following table to report the non-criteria pollutant (HAP) emissions from source:

CAS Number ⁸	Chemical Name	Overall Control Efficiency	Uncontrolled Emission Factor (specify units)	Emission Factor Source (AP-42, Mfg. etc)	Uncontrolled Actual Emissions (lbs/year)	Controlled Actual Emissions ⁶ (lbs/year)

⁶ Annual emission fees will be based on actual controlled emissions reported. If source has not yet started operating, leave blank.

Permit Number: 090PR0329	90PR0329	Permit Number:
--------------------------	----------	----------------

Section 9 - Applicant Certification

I hereby certify that all information contained herein and information submitted with this application is complete, true and correct.

1 defe		11/30/2017
Signature of Legally Authorized Person	n (not a vendor or consultant)	Date
	the stand part of the	0.00
Marlin Mullet	Chief Executive	Officer

Check the appropriate box to request a copy of the:

Draft permit prior to issuance

Draft permit prior to public notice

(Checking any of these boxes may result in an increased fee and/or processing time)

This emission notice is valid for five (5) years. Submission of a revised APEN is required 30 days prior to expiration of the five-year term, or when a reportable change is made (significant emissions increase, increase production, new equipment, change in fuel type, etc). See Regulation No. 3, Part A, II.C. for revised APEN requirements.

Send this form along with \$152.90 to:

Colorado Department of Public Health and Environment Air Pollution Control Division APCD-SS-B1 4300 Cherry Creek Drive South Denver, CO 80246-1530

Make check payable to: Colorado Department of Public Health and Environment For more information or assistance call:

Small Business Assistance Program (303) 692-3175 or (303) 692-3148

Or visit the APCD website at:

https://www.colorado.gov/cdphe/apcd

Telephone: (303) 692-3150

golder.com

Tracking Details

A3768100457

Updated: 10/06/2020 12:58 P.M. EST

Delivered

Ο

 \checkmark

Delivered On

Tuesday 10/06/2020

Delivery Time

at 10:38 A.M.

Send Updates

Delivered To DENVER, CO, US

Left At: Mail Room

Received By: DELGADO

Proof of Delivery

This website uses cookies

We do this to better understand how visitors use our site and to offer you a more personal experience. Please see our <u>Privacy Notice (https://www.ups.com/us/en/heip-center/legal-terms-conditions/privacy-notice.page)</u> for more information. You can manage your preferences by selecting <u>Cookie Settings</u>.

Ask UPS

X

Shipment Progress

V

Shipment Details

Service

UPS Next Day Air Saver [2] (https://www.ups.com/content/us/en/shipping/time/service/index.html)

Show More +

C Track

Copyright ©1994- 2020 United Parcel Service of America, Inc. All rights reserved.

This website uses cookies

We do this to better understand how visitors use our site and to offer you a more personal experience. Please see our <u>Privacy Notice (https://www.ups.com/us/en/help-center/legal-terms-conditions/privacy-notice.page)</u> for more information. You can manage your preferences by selecting <u>Cookie Settings</u>.

Ask UPS

X