From:
 Scott Cowman

 To:
 Alan Goldich

 Subject:
 RE: Soils test

Date: Monday, April 24, 2023 11:05:40 AM

Alan,

I think the answers are satisfactory and should be documented along with test results so that a future prospective owner understands potential risks. If possible, we should approve a monitoring plan prior to sampling if something like this comes up again.

Thanks - Scott

From: Alan Goldich <agoldich@co.routt.co.us>

Sent: Monday, April 17, 2023 3:34 PM

To: Scott Cowman <scowman@co.routt.co.us>

Subject: FW: Soils test

Scott,

Below is what I got from D&D answering the question you had on the soil test. Let me know if this is adequate or not.

Alan Goldich
Routt County Planning
970-879-2704
136 6th St., Suite 200
Steamboat Springs, CO 80477
Agoldich@co.routt.co.us

Please consider the environment before printing this email.

From: Brent A. Starnes < bstarnes@hfak.com>

Sent: Friday, April 7, 2023 5:18 PM

To: Alan Goldich agoldich@co.routt.co.us Cc: Kristy Winser kwinser@co.routt.co.us >

Subject: RE: Soils test

Alan,

Sorry for the frustrations, but progress is being made. Applications have been submitted for building and sewer permits and those have been returned for additional information. D&D is working on those comments to secure those permits. I will get an update on the flood plain permit for you next week. As for the soil sample questions, responses are provided below.

Criteria used to determine appropriate testing, to determine potential contamination.

We used a VOA-BNA from ACZ labs (water sample) with a method of 8260 and 8270 d/e to test for organic & semi volitile organic alalytical compounds. For the soils we used VOA-BNA - SO using the same methods: 8260 and 8270 to test for organic & semi volitile organic alalytical compounds. Soil tests and ground water samples were extracted at the same locations on site.

• Description of what was sampled and analytical methods, and why those methods were appropriate to get desired result.

Using an excavator, in the SW corner of the property two samples of soil were taken at different elevations. Further excavation was performed to expose groundwater where additional water samples were also taken. These tests are appropriate because they would show a broad range of potential contaminants that could be associated with a daily operation of a metal recycle yard.

How the location is representative of the site for determining soil contamination.

We are assuming the direction of groundwater will flow to the lowest point on the property or the SW corner (home of the future retention pond location). This location was chosen on a point between the metal recycling operation and a sensitive receptor (Yampa River).

• Detailed discussion of findings and results

The findings show that zero contaminates were discovered at the metal recycle operation. Keeping in mind, ground water will indicate contamination faster than soils it was important to test both water and soils. The test site chosen will continue to be a primo indicator for any organic analytical findings for the entire property as it is at the lowest elevation.

Brent

Brent A. Starnes

Hoskin Farina & Kampf, P.C. (970) 986-3400 FAX: (970) 986-3401 Confidential and Privileged:

This e-mail communication, including any attachment(s), contains information intended only for the use of the individual or entity to which it is addressed and may contain information that is legally privileged and/or confidential. If you are not the intended recipient or an employee or agent responsible for delivering the communication to the intended recipient, you are hereby notified that any review, disclosure, copying, printing, distribution, or use of its contents or attachments is strictly prohibited. If you have received this communication in error, please notify our administrator immediately by telephone at (970) 986-3400, return the original communication and its attachment(s) to admin@hfak.com and permanently delete the communication from your system. Thank you.

From: Alan Goldich agoldich@co.routt.co.us>

Sent: Monday, April 3, 2023 3:12 PM

December 12, 2022

Report to:

Donald Duska

D&D Enterprises, Inc.

P.O. Box 774426

Steamboat Springs, CO 80477

Bill to:

Donald Duska

D&D Enterprises, Inc.

P.O. Box 774426

Steamboat Springs, CO 80477

Project ID:

ACZ Project ID: L77358

Donald Duska:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on November 21, 2022. This project has been assigned to ACZ's project number, L77358. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L77358. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after January 11, 2023. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Sue Webber has reviewed and approved this report.

L77358-2212121622 Page 1 of 55

Case Narrative

DD Enterprises, Inc. December 12, 2022

Project ID:

ACZ Project ID: L77358

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 2 miscellaneous samples from D&D Enterprises, Inc. on November 21, 2022. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L77358. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

Sample Analysis

These samples were analyzed for organic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The following required further detail not provided by the Extended Qualifier Report:

1. The below is from WG556216, Qualifier: N1, Applies to: L77358-01/HEXACHLOROCYCLOPENTADIENE, L77358-02/HEXACHLOROCYCLOPENTADIENE - Recovery of the laboratory control samples (LCSS/LCSSD) were within acceptance limits but the RPD exceeded acceptance criteria.

D&D Enterprises, Inc.

Project ID:

Sample ID: #1

ACZ Sample ID: **L77358-01**

Date Received: 11/21/22
Sample Matrix: Soil

Date Sampled: 11/21/22 0:00

Base Neutral Acid Extractables by GC/MS

Analysis Method: M8270D/E GC/MS

Extract Method: M3546

Workgroup: WG556216

Analyst: ekm

Extract Date: 12/05/22 14:00 Analysis Date: 12/07/22 12:46

Compound	CAS	Result	QUAL	Dilution	XQ	Units	MDL	PQL
1,2,4-Trichlorobenzene	120-82-1	<133	U	66.3	*	ug/Kg	133	663
1,2-Dichlorobenzene	95-50-1	<133	U	66.3	*	ug/Kg	133	663
1,3-Dichlorobenzene	541-73-1	<133	U	66.3	*	ug/Kg	133	663
1,4-Dichlorobenzene	106-46-7	<133	U	66.3	*	ug/Kg	133	663
2,4,5-Trichlorophenol	95-95-4	<663	U	66.3	*	ug/Kg	663	3320
2,4,6-Trichlorophenol	88-06-2	<133	U	66.3	*	ug/Kg	133	663
2,4-Dichlorophenol	120-83-2	<133	U	66.3	*	ug/Kg	133	663
2,4-Dimethylphenol	105-67-9	<265	U	66.3	*	ug/Kg	265	1330
2,4-Dinitrophenol	51-28-5	<1330	U	66.3	*	ug/Kg	1330	3320
2,4-Dinitrotoluene	121-14-2	<133	U	66.3	*	ug/Kg	133	663
2,6-Dinitrotoluene	606-20-8	<663	U	66.3	*	ug/Kg	663	3320
2-Chloronaphthalene	91-58-7	<133	U	66.3	*	ug/Kg	133	663
2-Chlorophenol	95-57-8	<133	U	66.3	*	ug/Kg	133	663
2-Methylnaphthalene	91-57-6	<133	U	66.3	*	ug/Kg	133	663
2-Methylphenol	95-48-7	<133	U	66.3	*	ug/Kg	133	663
2-Nitroaniline	88-74-4	<663	U	66.3	*	ug/Kg	663	3320
2-Nitrophenol	88-75-5	<265	U	66.3	*	ug/Kg	265	1330
3- & 4-Methylphenol	1319-77-3	<265	U	66.3	*	ug/Kg	265	1330
3,3-Dichlorobenzidine	91-94-1	<1330	U	66.3	*	ug/Kg	1330	3320
3-Nitroaniline	99-09-2	<995	U	66.3	*	ug/Kg	995	3320
4,6-Dinitro-2-methylphenol	534-52-1	<1330	U	66.3	*	ug/Kg	1330	3320
4-Bromophenyl phenyl ether	101-55-3	<133	U	66.3	*	ug/Kg	133	663
4-Chloro-3-methylphenol	59-50-7	<133	U	66.3	*	ug/Kg	133	663
4-Chloroaniline	106-47-8	<265	U	66.3	*	ug/Kg	265	663
4-Chlorophenyl phenyl ether	7005-72-3	<133	U	66.3	*	ug/Kg	133	663
4-Nitroaniline	100-01-6	<663	U	66.3	*	ug/Kg	663	3320
4-Nitrophenol	100-02-07	<663	U	66.3	*	ug/Kg	663	3320
Acenaphthene	83-32-9	<133	U	66.3	*	ug/Kg	133	663
Acenaphthylene	208-96-8	<133	U	66.3	*	ug/Kg	133	663
Aniline	62-53-3	<1660	U	66.3	*	ug/Kg	1660	3320
Anthracene	120-12-7	<133	U	66.3	*	ug/Kg	133	663
Azobenzene	103-33-3	<663	U	66.3	*	ug/Kg	663	3320
Benzo(a)anthracene	56-55-3	<133	U	66.3	*	ug/Kg	133	663
Benzo(a)pyrene	50-32-8	<133	U	66.3	*	ug/Kg	133	663
Benzo(b)fluoranthene	205-99-2	<133	U	66.3	*	ug/Kg	133	663
Benzo(g,h,i)perylene	191-24-2	<133	U	66.3	*	ug/Kg	133	663
Benzo(k)fluoranthene	207-08-9	<133	U	66.3	*	ug/Kg	133	663
Benzoic Acid	65-85-0	<1330	U	66.3	*	ug/Kg	1330	3320

REPOR.01.01.01.02

L77358-2212121622 Page 3 of 55

^{*} Please refer to Qualifier Reports for details.

Date Received: 11/21/22

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

D&D Enterprises, Inc. ACZ Sample ID: L77358-01

Project ID: Date Sampled: 11/21/22 0:00 Sample ID:

Sample Matrix: Soil

			Sa	mple Matri	x: S	Soil		
Benzyl alcohol	100-51-6	<332	U	66.3	*	ug/Kg	332	663
Bis(2-chloroethoxy)methane	111-91-1	<133	U	66.3	*	ug/Kg	133	663
Bis(2-chloroethyl) ether	111-44-4	<133	U	66.3	*	ug/Kg	133	663
Bis(2-chloroisopropyl) ether	39638-32-9	<133	U	66.3	*	ug/Kg	133	663
Bis(2-ethylhexyl) phthalate	117-81-7	<265	U	66.3	*	ug/Kg	265	1330
Butyl benzyl phthalate	85-68-7	<265	U	66.3	*	ug/Kg	265	663
Chrysene	218-01-9	<133	U	66.3	*	ug/Kg	133	663
Dibenzo(a,h)anthracene	53-70-3	<133	U	66.3	*	ug/Kg	133	663
Dibenzofuran	132-64-9	<133	U	66.3	*	ug/Kg	133	663
Diethylphthalate	84-66-2	<133	U	66.3	*	ug/Kg	133	663
Dimethyl phthalate	131-11-3	<133	U	66.3	*	ug/Kg	133	663
Di-n-butyl phthalate	84-74-2	<133	U	66.3	*	ug/Kg	133	663
Di-n-octyl phthalate	117-84-0	<133	U	66.3	*	ug/Kg	133	663
Fluoranthene	206-44-0	<133	U	66.3	*	ug/Kg	133	663
Fluorene	86-73-7	<133	U	66.3	*	ug/Kg	133	663
Hexachlorobenzene	118-74-1	<133	U	66.3	*	ug/Kg	133	663
Hexachlorobutadiene	87-68-3	<133	U	66.3	*	ug/Kg	133	663
Hexachlorocyclopentadiene	77-47-4	<133	U	66.3	*	ug/Kg	133	663
Hexachloroethane	67-72-1	<133	U	66.3	*	ug/Kg	133	663
Indeno(1,2,3-cd)pyrene	193-39-5	<133	U	66.3	*	ug/Kg	133	663
Isophorone	78-59-1	<133	U	66.3	*	ug/Kg	133	663
Naphthalene	91-20-3	<133	U	66.3	*	ug/Kg	133	663
Nitrobenzene	98-95-3	<133	U	66.3	*	ug/Kg	133	663
N-Nitrosodimethylamine	62-75-9	<663	U	66.3	*	ug/Kg	663	3320
N-Nitrosodi-n-propylamine	621-64-7	<133	U	66.3	*	ug/Kg	133	663
N-Nitrosodiphenylamine	86-30-6	<133	U	66.3	*	ug/Kg	133	663
Pentachlorophenol	87-86-5	<995	U	66.3	*	ug/Kg	995	3320
Phenanthrene	85-01-8	<133	U	66.3	*	ug/Kg	133	663
Phenol	108-95-2	<265	U	66.3	*	ug/Kg	265	1330
Pyrene	129-00-0	<133	U	66.3	*	ug/Kg	133	663
Surrogate Recoveries	CAS	% Recovery		Dilution	XQ	Units	LCL	UCL
2,4,6-Tribromophenol	118-79-6	84.6		66.3	*	%	35	125
2-Fluorobiphenyl	321-60-8	81.9		66.3	*	%	45	105
2-Fluorophenol	367-12-4	85.9		66.3	*	%	35	115
Nitrobenzene-d5	4165-60-0	76.8		66.3	*	%	35	100
Phenol-d6	13127-88-3	82.7		66.3	*	%	70	130
Terphenyl-d14	1718-51-0	82.2		66.3	*	%	30	125

^{*} Please refer to Qualifier Reports for details.

D&D Enterprises, Inc.

Project ID:

Sample ID: #1

ACZ Sample ID: **L77358-01**

Date Sampled: 11/21/22 0:00
Date Received: 11/21/22

Sample Matrix: Soil

Volatile Organics by GC/MS

Analysis Method: M8260C/D GC/MS

Extract Method: 5035A

Workgroup: WG555698

Analyst: bcc

Extract Date: 11/29/22 15:49 Analysis Date: 11/29/22 15:49

Compound	CAS	Result	QUAL	Dilution	XQ	Units	MDL	PQL
1,1,1,2-Tetrachloroethane	630-20-6	<20	U	5	*	ug/Kg	20	50
1,1,1-Trichloroethane	71-55-6	<50	U	5	*	ug/Kg	50	125
1,1,2,2-Tetrachloroethane	79-34-5	<15	U	5	*	ug/Kg	15	50
1,1,2-Trichloroethane	79-00-5	<20	U	5	*	ug/Kg	20	50
1,1-Dichloroethane	75-34-3	<20	U	5	*	ug/Kg	20	50
1,1-Dichloroethene	75-35-4	<20	U	5	*	ug/Kg	20	50
1,1-Dichloropropene	563-58-6	<20	U	5	*	ug/Kg	20	50
1,2,3-Trichlorobenzene	87-61-6	<20	U	5	*	ug/Kg	20	50
1,2,3-Trichloropropane	96-18-4	<20	U	5	*	ug/Kg	20	50
1,2,4-Trichlorobenzene	120-82-1	<15	U	5	*	ug/Kg	15	50
1,2,4-Trimethylbenzene	95-63-6	<20	U	5	*	ug/Kg	20	50
1,2-Dibromo-3-chloropropane	96-12-8	<20	U	5	*	ug/Kg	20	50
1,2-Dibromoethane	106-93-4	<20	U	5	*	ug/Kg	20	50
1,2-Dichlorobenzene	95-50-1	<20	U	5	*	ug/Kg	20	50
1,2-Dichloroethane	107-06-2	<20	U	5	*	ug/Kg	20	50
1,2-Dichloropropane	78-87-5	<20	U	5	*	ug/Kg	20	50
1,3,5-Trimethylbenzene	108-67-8	<20	U	5	*	ug/Kg	20	50
1,3-Dichlorobenzene	541-73-1	<20	U	5	*	ug/Kg	20	50
1,3-Dichloropropane	142-28-9	<20	U	5	*	ug/Kg	20	50
1,4-Dichlorobenzene	106-46-7	<20	U	5	*	ug/Kg	20	50
2,2-Dichloropropane	594-20-7	<20	U	5	*	ug/Kg	20	50
2-Butanone	78-93-3	<50	U	5	*	ug/Kg	50	125
2-Chloroethyl vinyl ether	110-75-8	<25	U	5	*	ug/Kg	25	125
2-Chlorotoluene	95-49-8	<20	U	5	*	ug/Kg	20	50
2-Hexanone	591-78-6	<50	U	5	*	ug/Kg	50	125
4-Chlorotoluene	106-43-4	<20	U	5	*	ug/Kg	20	50
4-Isopropyltoluene	99-87-6	<20	U	5	*	ug/Kg	20	50
4-Methyl-2-Pentanone	108-10-1	<50	U	5	*	ug/Kg	50	250
Acetone	67-64-1	<50	U	5	*	ug/Kg	50	125
Acrylonitrile	107-13-1	<20	U	5	*	ug/Kg	20	50
Benzene	71-43-2	<20	U	5	*	ug/Kg	20	50
Bromobenzene	108-86-1	<20	U	5	*	ug/Kg	20	50
Bromochloromethane	74-97-5	<20	U	5	*	ug/Kg	20	50
Bromodichloromethane	75-27-4	<20	U	5	*	ug/Kg	20	50
Bromoform	75-25-2	<20	U	5	*	ug/Kg	20	50
Bromomethane	74-83-9	<20	U	5	*	ug/Kg	20	50
Carbon Disulfide	75-15-0	<20	U	5	*	ug/Kg	20	50
Carbon Tetrachloride	56-23-5	<50	U	5	*	ug/Kg	50	125

REPOR.01.01.01.02 * Please refer to Qualifier Reports for details.

L77358-2212121622 Page 5 of 55

Date Received: 11/21/22

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

D&D Enterprises, Inc. ACZ Sample ID: L77358-01

Project ID: Date Sampled: 11/21/22 0:00 Sample ID:

Sample Matrix: Soil

			Sal	mpie iviatri	X: 3	SOII		
Chlorobenzene	108-90-7	<20	U	5	*	ug/Kg	20	50
Chloroethane	75-00-3	<20	U	5	*	ug/Kg	20	50
Chloroform	67-66-3	<20	U	5	*	ug/Kg	20	50
Chloromethane	74-87-3	<20	U	5	*	ug/Kg	20	50
cis-1,2-Dichloroethene	156-59-2	<20	U	5	*	ug/Kg	20	50
cis-1,3-Dichloropropene	10061-01-5	<20	U	5	*	ug/Kg	20	50
Dibromochloromethane	124-48-1	<20	U	5	*	ug/Kg	20	50
Dibromomethane	74-95-3	<20	U	5	*	ug/Kg	20	50
Dichlorodifluoromethane	75-71-8	<25	U	5	*	ug/Kg	25	75
Ethylbenzene	100-41-4	<20	U	5	*	ug/Kg	20	50
Hexachlorobutadiene	87-68-3	<20	U	5	*	ug/Kg	20	50
Isopropylbenzene	98-82-8	<20	U	5	*	ug/Kg	20	50
m p Xylene	1330-20-7	<50	U	5	*	ug/Kg	50	125
Methyl Tert Butyl Ether	1634-04-4	<20	U	5	*	ug/Kg	20	50
Methylene Chloride	75-09-2	<20	U	5	*	ug/Kg	20	50
Naphthalene	91-20-3	<20	U	5	*	ug/Kg	20	50
n-Butylbenzene	104-51-8	<20	U	5	*	ug/Kg	20	50
n-Propylbenzene	103-65-1	<20	U	5	*	ug/Kg	20	50
o Xylene	95-47-6	<20	U	5	*	ug/Kg	20	50
sec-Butylbenzene	135-98-8	<20	U	5	*	ug/Kg	20	50
Styrene	100-42-5	<20	U	5	*	ug/Kg	20	50
tert-Butylbenzene	98-06-6	<20	U	5	*	ug/Kg	20	50
Tetrachloroethene	127-18-4	<20	U	5	*	ug/Kg	20	50
Toluene	108-88-3	<20	U	5	*	ug/Kg	20	50
trans-1,2-Dichloroethene	156-60-5	<20	U	5	*	ug/Kg	20	50
trans-1,3-Dichloropropene	10061-02-6	<15	U	5	*	ug/Kg	15	50
Trichloroethene	79-01-6	<25	U	5	*	ug/Kg	25	75
Trichlorofluoromethane	75-69-4	<20	U	5	*	ug/Kg	20	50
Vinyl Acetate	108-05-4	<20	U	5	*	ug/Kg	20	50
Vinyl Chloride	75-01-4	<20	U	5	*	ug/Kg	20	50
Surrogate Recoveries	CAS	% Recovery		Dilution	XQ	Units	LCL	UCL
Bromofluorobenzene	30135-88-7	98.4		5	*	%	70	130
Dibromofluoromethane	1868-53-7	97.2		5	*	%	70	130
Toluene-d8	2037-26-5	99.6		5	*	%	70	130

^{*} Please refer to Qualifier Reports for details.

D&D Enterprises, Inc.

Project ID:

Sample ID: #2

ACZ Sample ID: **L77358-02**

Date Sampled: 11/21/22 0:00
Date Received: 11/21/22

Sample Matrix: Soil

Base Neutral Acid Extractables by GC/MS

Analysis Method: M8270D/E GC/MS

Extract Method: M3546

Workgroup: WG556216

Analyst: ekm

Extract Date: 12/05/22 14:00 Analysis Date: 12/07/22 14:25

Compound	CAS	Result	QUAL	Dilution	XQ	Units	MDL	PQL
1,2,4-Trichlorobenzene	120-82-1	<652	U	326	*	ug/Kg	652	3260
1,2-Dichlorobenzene	95-50-1	<652	U	326	*	ug/Kg	652	3260
1,3-Dichlorobenzene	541-73-1	<652	U	326	*	ug/Kg	652	3260
1,4-Dichlorobenzene	106-46-7	<652	U	326	*	ug/Kg	652	3260
2,4,5-Trichlorophenol	95-95-4	<3260	U	326	*	ug/Kg	3260	16300
2,4,6-Trichlorophenol	88-06-2	<652	U	326	*	ug/Kg	652	3260
2,4-Dichlorophenol	120-83-2	<652	U	326	*	ug/Kg	652	3260
2,4-Dimethylphenol	105-67-9	<1300	U	326	*	ug/Kg	1300	6520
2,4-Dinitrophenol	51-28-5	<6520	U	326	*	ug/Kg	6520	16300
2,4-Dinitrotoluene	121-14-2	<652	U	326	*	ug/Kg	652	3260
2,6-Dinitrotoluene	606-20-8	<3260	U	326	*	ug/Kg	3260	16300
2-Chloronaphthalene	91-58-7	<652	U	326	*	ug/Kg	652	3260
2-Chlorophenol	95-57-8	<652	U	326	*	ug/Kg	652	3260
2-Methylnaphthalene	91-57-6	<652	U	326	*	ug/Kg	652	3260
2-Methylphenol	95-48-7	<652	U	326	*	ug/Kg	652	3260
2-Nitroaniline	88-74-4	<3260	U	326	*	ug/Kg	3260	16300
2-Nitrophenol	88-75-5	<1300	U	326	*	ug/Kg	1300	6520
3- & 4-Methylphenol	1319-77-3	<1300	U	326	*	ug/Kg	1300	6520
3,3-Dichlorobenzidine	91-94-1	<6520	U	326	*	ug/Kg	6520	16300
3-Nitroaniline	99-09-2	<4890	U	326	*	ug/Kg	4890	16300
4,6-Dinitro-2-methylphenol	534-52-1	<6520	U	326	*	ug/Kg	6520	16300
4-Bromophenyl phenyl ether	101-55-3	<652	U	326	*	ug/Kg	652	3260
4-Chloro-3-methylphenol	59-50-7	<652	U	326	*	ug/Kg	652	3260
4-Chloroaniline	106-47-8	<1300	U	326	*	ug/Kg	1300	3260
4-Chlorophenyl phenyl ether	7005-72-3	<652	U	326	*	ug/Kg	652	3260
4-Nitroaniline	100-01-6	<3260	U	326	*	ug/Kg	3260	16300
4-Nitrophenol	100-02-07	<3260	U	326	*	ug/Kg	3260	16300
Acenaphthene	83-32-9	<652	U	326	*	ug/Kg	652	3260
Acenaphthylene	208-96-8	<652	U	326	*	ug/Kg	652	3260
Aniline	62-53-3	<8150	U	326	*	ug/Kg	8150	16300
Anthracene	120-12-7	<652	U	326	*	ug/Kg	652	3260
Azobenzene	103-33-3	<3260	U	326	*	ug/Kg	3260	16300
Benzo(a)anthracene	56-55-3	<652	U	326	*	ug/Kg	652	3260
Benzo(a)pyrene	50-32-8	<652	U	326	*	ug/Kg	652	3260
Benzo(b)fluoranthene	205-99-2	<652	U	326	*	ug/Kg	652	3260
Benzo(g,h,i)perylene	191-24-2	<652	U	326	*	ug/Kg	652	3260
Benzo(k)fluoranthene	207-08-9	<652	U	326	*	ug/Kg	652	3260
Benzoic Acid	65-85-0	<6520	U	326	*	ug/Kg	6520	16300

REPOR.01.01.01.02

L77358-2212121622 Page 7 of 55

^{*} Please refer to Qualifier Reports for details.

D&D Enterprises, Inc. ACZ Sample ID: L77358-02

Project ID: Date Sampled: 11/21/22 0:00
Sample ID: #2
Date Received: 11/21/22

ample ID: #2 Date Received: 11/21/22
Sample Matrix: Soil

Benzyl alcohol	100-51-6	<1630	U	326	*	ug/Kg	1630	3260
Bis(2-chloroethoxy)methane	111-91-1	<652	U	326	*	ug/Kg	652	3260
Bis(2-chloroethyl) ether	111-44-4	<652	U	326	*	ug/Kg	652	3260
Bis(2-chloroisopropyl) ether	39638-32-9	<652	U	326	*	ug/Kg	652	3260
Bis(2-ethylhexyl) phthalate	117-81-7	<1300	U	326	*	ug/Kg	1300	6520
Butyl benzyl phthalate	85-68-7	<1300	U	326	*	ug/Kg	1300	3260
Chrysene	218-01-9	<652	U	326	*	ug/Kg	652	3260
Dibenzo(a,h)anthracene	53-70-3	<652	U	326	*	ug/Kg	652	3260
Dibenzofuran	132-64-9	<652	U	326	*	ug/Kg	652	3260
Diethylphthalate	84-66-2	<652	U	326	*	ug/Kg	652	3260
Dimethyl phthalate	131-11-3	<652	U	326	*	ug/Kg	652	3260
Di-n-butyl phthalate	84-74-2	<652	U	326	*	ug/Kg	652	3260
Di-n-octyl phthalate	117-84-0	<652	U	326	*	ug/Kg	652	3260
Fluoranthene	206-44-0	<652	U	326	*	ug/Kg	652	3260
Fluorene	86-73-7	<652	U	326	*	ug/Kg	652	3260
Hexachlorobenzene	118-74-1	<652	U	326	*	ug/Kg	652	3260
Hexachlorobutadiene	87-68-3	<652	U	326	*	ug/Kg	652	3260
Hexachlorocyclopentadiene	77-47-4	<652	U	326	*	ug/Kg	652	3260
Hexachloroethane	67-72-1	<652	U	326	*	ug/Kg	652	3260
Indeno(1,2,3-cd)pyrene	193-39-5	<652	U	326	*	ug/Kg	652	3260
Isophorone	78-59-1	<652	U	326	*	ug/Kg	652	3260
Naphthalene	91-20-3	<652	U	326	*	ug/Kg	652	3260
Nitrobenzene	98-95-3	<652	U	326	*	ug/Kg	652	3260
N-Nitrosodimethylamine	62-75-9	<3260	U	326	*	ug/Kg	3260	16300
N-Nitrosodi-n-propylamine	621-64-7	<652	U	326	*	ug/Kg	652	3260
N-Nitrosodiphenylamine	86-30-6	<652	U	326	*	ug/Kg	652	3260
Pentachlorophenol	87-86-5	<4890	U	326	*	ug/Kg	4890	16300
Phenanthrene	85-01-8	<652	U	326	*	ug/Kg	652	3260
Phenol	108-95-2	<1300	U	326	*	ug/Kg	1300	6520
Pyrene	129-00-0	<652	U	326	*	ug/Kg	652	3260
Surrogate Recoveries	CAS	% Recovery		Dilution	XQ	Units	LCL	UCL
2,4,6-Tribromophenol	118-79-6	81		326	*	%	35	125
2-Fluorobiphenyl	321-60-8	77.1		326	*	%	45	105
2-Fluorophenol	367-12-4	75.3		326	*	%	35	115
Nitrobenzene-d5	4165-60-0	62.1		326	*	%	35	100
Phenol-d6	13127-88-3	77.2		326	*	%	70	130
Terphenyl-d14	1718-51-0	81.3		326	*	%	30	125

^{*} Please refer to Qualifier Reports for details.

D&D Enterprises, Inc.

Project ID:

Sample ID: #2

ACZ Sample ID: **L77358-02**

Date Sampled: 11/21/22 0:00
Date Received: 11/21/22

Sample Matrix: Soil

Volatile Organics by GC/MS

Analysis Method: M8260C/D GC/MS

Extract Method: 5035A

Workgroup: WG555698

Analyst: bcc

REPOR.01.01.01.02

Extract Date: 11/29/22 16:41 Analysis Date: 11/29/22 16:41

1,1,1-Trichloroethane 71-55-6 1,1,2,2-Tetrachloroethane 79-34-5 1,1,2-Trichloroethane 79-00-5 1,1-Dichloroethane 75-34-3 1,1-Dichloroethene 75-35-4 1,1-Dichloropropene 563-58-6 1,2,3-Trichlorobenzene 87-61-6 1,2,3-Trichloropropane 96-18-4 1,2,4-Trichlorobenzene 120-82-1 1,2,4-Trimethylbenzene 95-63-6 1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dibromoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7			lution 2	KQ	Units	MDL	PQL
1,1,2,2-Tetrachloroethane 79-34-5 1,1,2-Trichloroethane 79-00-5 1,1-Dichloroethane 75-34-3 1,1-Dichloroethene 75-35-4 1,1-Dichloropropene 563-58-6 1,2,3-Trichlorobenzene 87-61-6 1,2,3-Trichloropropane 96-18-4 1,2,4-Trimethylbenzene 120-82-1 1,2,4-Trimethylbenzene 95-63-6 1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dishomoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloroethane 107-06-2 1,3-Dichloropropane 78-87-5 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:20	U	5	*	ug/Kg	20	50
1,1,2-Trichloroethane 79-00-5 1,1-Dichloroethane 75-34-3 1,1-Dichloroethene 75-35-4 1,1-Dichloropropene 563-58-6 1,2,3-Trichlorobenzene 87-61-6 1,2,3-Trichloropropane 96-18-4 1,2,4-Trimethylbenzene 120-82-1 1,2,4-Trimethylbenzene 95-63-6 1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dibromoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloroethane 107-06-2 1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:50	U	5	*	ug/Kg	50	125
1,1-Dichloroethane 75-34-3 1,1-Dichloroethene 75-35-4 1,1-Dichloropropene 563-58-6 1,2,3-Trichlorobenzene 87-61-6 1,2,3-Trichloropropane 96-18-4 1,2,4-Trichlorobenzene 120-82-1 1,2,4-Trimethylbenzene 95-63-6 1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dibromoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloroethane 107-06-2 1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:15	U	5	*	ug/Kg	15	50
1,1-Dichloroethene 75-35-4 1,1-Dichloropropene 563-58-6 1,2,3-Trichlorobenzene 87-61-6 1,2,3-Trichloropropane 96-18-4 1,2,4-Trichlorobenzene 120-82-1 1,2,4-Trimethylbenzene 95-63-6 1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dibromoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloroethane 107-06-2 1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:20	U	5	*	ug/Kg	20	50
1,1-Dichloropropene 563-58-6 1,2,3-Trichlorobenzene 87-61-6 1,2,3-Trichloropropane 96-18-4 1,2,4-Trichlorobenzene 120-82-1 1,2,4-Trimethylbenzene 95-63-6 1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dibromoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloroethane 107-06-2 1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:20	U	5	*	ug/Kg	20	50
1,2,3-Trichlorobenzene 87-61-6 1,2,3-Trichloropropane 96-18-4 1,2,4-Trichlorobenzene 120-82-1 1,2,4-Trimethylbenzene 95-63-6 1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dibromoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloroethane 107-06-2 1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:20	U	5	*	ug/Kg	20	50
1,2,3-Trichloropropane 96-18-4 1,2,4-Trichlorobenzene 120-82-1 1,2,4-Trimethylbenzene 95-63-6 1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dibromoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloroethane 107-06-2 1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:20	U	5	*	ug/Kg	20	50
1,2,4-Trichlorobenzene 120-82-1 1,2,4-Trimethylbenzene 95-63-6 1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dibromoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloroethane 107-06-2 1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:20	U	5	*	ug/Kg	20	50
1,2,4-Trimethylbenzene 95-63-6 <	:20	U	5	*	ug/Kg	20	50
1,2-Dibromo-3-chloropropane 96-12-8 1,2-Dibromoethane 106-93-4 1,2-Dichlorobenzene 95-50-1 1,2-Dichloroethane 107-06-2 1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:15	U	5	*	ug/Kg	15	50
1,2-Dibromoethane 106-93-4 <	:20	U	5	*	ug/Kg	20	50
1,2-Dichlorobenzene 95-50-1 <	:20	U	5	*	ug/Kg	20	50
1,2-Dichloroethane 107-06-2 <	:20	U	5	*	ug/Kg	20	50
1,2-Dichloropropane 78-87-5 1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:20	U	5	*	ug/Kg	20	50
1,3,5-Trimethylbenzene 108-67-8 1,3-Dichlorobenzene 541-73-1 1,3-Dichloropropane 142-28-9 1,4-Dichlorobenzene 106-46-7	:20	U	5	*	ug/Kg	20	50
1,3-Dichlorobenzene 541-73-1 <	:20	U	5	*	ug/Kg	20	50
1,3-Dichloropropane 142-28-9 <	:20	U	5	*	ug/Kg	20	50
1,4-Dichlorobenzene 106-46-7 <	:20	U	5	*	ug/Kg	20	50
	:20	U	5	*	ug/Kg	20	50
2.2-Dichloropropage 594-20-7 <	:20	U	5	*	ug/Kg	20	50
2,2 Bioinoropropario	:20	U	5	*	ug/Kg	20	50
2-Butanone 78-93-3 <	:50	U	5	*	ug/Kg	50	125
2-Chloroethyl vinyl ether 110-75-8	:25	U	5	*	ug/Kg	25	125
2-Chlorotoluene 95-49-8 <	:20	U	5	*	ug/Kg	20	50
2-Hexanone 591-78-6 <	:50	U	5	*	ug/Kg	50	125
4-Chlorotoluene 106-43-4 <	:20	U	5	*	ug/Kg	20	50
4-Isopropyltoluene 99-87-6 <	:20	U	5	*	ug/Kg	20	50
4-Methyl-2-Pentanone 108-10-1 <	:50	U	5	*	ug/Kg	50	250
Acetone 67-64-1 <	:50	U	5	*	ug/Kg	50	125
Acrylonitrile 107-13-1	:20	U	5	*	ug/Kg	20	50
Benzene 71-43-2 <	:20	U	5	*	ug/Kg	20	50
Bromobenzene 108-86-1 <	:20	U	5	*	ug/Kg	20	50
Bromochloromethane 74-97-5 <	:20	U	5	*	ug/Kg	20	50
Bromodichloromethane 75-27-4 <	:20	U	5		ug/Kg	20	50
Bromoform 75-25-2 <	:20	U	5		ug/Kg	20	50
Bromomethane 74-83-9	:20	U	5		ug/Kg	20	50
Carbon Disulfide 75-15-0 <	:20	U	5		ug/Kg	20	50
Carbon Tetrachloride 56-23-5	:50	U	5		ug/Kg	50	125

* Please refer to Qualifier Reports for details.

L77358-2212121622 Page 9 of 55

#2

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

D&D Enterprises, Inc. ACZ Sample ID: L77358-02

Project ID: Date Sampled: 11/21/22 0:00 Sample ID:

Date Received: 11/21/22 Sample Matrix: Soil

			Sar	mple Matri	x: S	Soil		
Chlorobenzene	108-90-7	<20	U	5	*	ug/Kg	20	50
Chloroethane	75-00-3	<20	U	5	*	ug/Kg	20	50
Chloroform	67-66-3	<20	U	5	*	ug/Kg	20	50
Chloromethane	74-87-3	<20	U	5	*	ug/Kg	20	50
cis-1,2-Dichloroethene	156-59-2	<20	U	5	*	ug/Kg	20	50
cis-1,3-Dichloropropene	10061-01-5	<20	U	5	*	ug/Kg	20	50
Dibromochloromethane	124-48-1	<20	U	5	*	ug/Kg	20	50
Dibromomethane	74-95-3	<20	U	5	*	ug/Kg	20	50
Dichlorodifluoromethane	75-71-8	<25	U	5	*	ug/Kg	25	75
Ethylbenzene	100-41-4	<20	U	5	*	ug/Kg	20	50
Hexachlorobutadiene	87-68-3	<20	U	5	*	ug/Kg	20	50
Isopropylbenzene	98-82-8	<20	U	5	*	ug/Kg	20	50
m p Xylene	1330-20-7	<50	U	5	*	ug/Kg	50	125
Methyl Tert Butyl Ether	1634-04-4	<20	U	5	*	ug/Kg	20	50
Methylene Chloride	75-09-2	<20	U	5	*	ug/Kg	20	50
Naphthalene	91-20-3	<20	U	5	*	ug/Kg	20	50
n-Butylbenzene	104-51-8	<20	U	5	*	ug/Kg	20	50
n-Propylbenzene	103-65-1	<20	U	5	*	ug/Kg	20	50
o Xylene	95-47-6	<20	U	5	*	ug/Kg	20	50
sec-Butylbenzene	135-98-8	<20	U	5	*	ug/Kg	20	50
Styrene	100-42-5	<20	U	5	*	ug/Kg	20	50
tert-Butylbenzene	98-06-6	<20	U	5	*	ug/Kg	20	50
Tetrachloroethene	127-18-4	<20	U	5	*	ug/Kg	20	50
Toluene	108-88-3	<20	U	5	*	ug/Kg	20	50
trans-1,2-Dichloroethene	156-60-5	<20	U	5	*	ug/Kg	20	50
trans-1,3-Dichloropropene	10061-02-6	<15	U	5	*	ug/Kg	15	50
Trichloroethene	79-01-6	<25	U	5	*	ug/Kg	25	75
Trichlorofluoromethane	75-69-4	<20	U	5	*	ug/Kg	20	50
Vinyl Acetate	108-05-4	<20	U	5	*	ug/Kg	20	50
Vinyl Chloride	75-01-4	<20	U	5	*	ug/Kg	20	50
Surrogate Recoveries	CAS	% Recovery		Dilution	XQ	Units	LCL	UCL
Bromofluorobenzene	30135-88-7	96.5		5	*	%	70	130
Dibromofluoromethane	1868-53-7	97.9		5	*	%	70	130
Toluene-d8	2037-26-5	101.1		5	*	%	70	130

^{*} Please refer to Qualifier Reports for details.

Report Header	Explanations
Batch	A distinct set of samples analyzed at a specific time
Found	Value of the QC Type of interest
Limit	Upper limit for RPD, in %.
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)
LCL	Lower Control Limit
MDL	Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #4)
	Allows for instrument and annual fluctuations.
PCN/SCN	A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA term "minimum level".
QC	True Value of the Control Sample or the amount added to the Spike
Rec	Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)
RPD	Relative Percent Difference, calculation used for Duplicate QC Types
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)
UCL	Upper Control Limit
Sample	Value of the Sample of interest

_				
Q	C Sample Ty	/pes		
	SURR	Surrogate	LFB	Laboratory Fortified Blank
	INTS	Internal Standard	LFM	Laboratory Fortified Matrix
	AS	Analytical Spike (Post Digestion)	LFMD	Laboratory Fortified Matrix Duplicate
	ASD	Analytical Spike (Post Digestion) Duplicate	LRB	Laboratory Reagent Blank
	DUP	Sample Duplicate	MS/MSD	Matrix Spike/Matrix Spike Duplicate
	LCSS	Laboratory Control Sample - Soil	PBS	Prep Blank - Soil
	I CSW	Laboratory Control Sample - Water	PBW	Prep Blank - Water

QC Samp	le Type	Explana	ations
QO Ouiiip	ic rypc	Explaine	ations.

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

ACZ Qualifiers (Qual)

0 Analyte concentration is estimated due to result exceeding calibration range. Н Analysis exceeded method hold time. pH is a field test with an immediate hold time. J

Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.

L Target analyte response was below the laboratory defined negative threshold.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

U

- EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983. (1)
- (2) EPA 600/4-90/020. Methods for the Determination of Organic Compounds in Drinking Water (I), July 1990.
- (3) EPA 600/R-92/129. Methods for the Determination of Organic Compounds in Drinking Water (II), July 1990.
- EPA SW-846. Test Methods for Evaluating Solid Waste. (4)
- (5) Standard Methods for the Examination of Water and Wastewater.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Excluding Oil & Grease, solid & biological matrices for organic analyses are reported on a wet weight basis.
- (3) An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier associated with the result.
- If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit. (4)

For a complete list of ACZ's Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

L77358-2212121622 Page 11 of 55

ACZ Project ID: L77358

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Base Neutral Acid Extractables by GC/MS

M8270D/E GC/MS

WG556216

MS	Sample ID:	L77358-01MS		PCN/S	CN: OPM	BNA2210)31-	Anal	yzed:	12/07	/22 13:19
Compound		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,2,4-TRICHLOROBENZEN	E	50220	U	2061.3	ug/Kg	69.0	34	118			
1,2-DICHLOROBENZENE		50210	U	2027.4	ug/Kg	68.0	33	117			
1,3-DICHLOROBENZENE		50265	U	1991.7	ug/Kg	67.0	30	115			
1,4-DICHLOROBENZENE		50045	U	2029.2	ug/Kg	68.0	31	115			
2,4,5-TRICHLOROPHENOL		50025	U	2442	ug/Kg	82.0	41	124			
2,4,6-TRICHLOROPHENOL		50085	U	2347.2	ug/Kg	79.0	39	126			
2,4-DICHLOROPHENOL		50150	U	2365.1	ug/Kg	79.0	40	122			
2,4-DIMETHYLPHENOL		50105	U	2252.5	ug/Kg	75.0	30	127			
2,4-DINITROPHENOL		50155	U	U	ug/Kg	0.0	15	130			M
2,4-DINITROTOLUENE		50220	U	2414.5	ug/Kg	81.0	48	126			
2,6-DINITROTOLUENE		50135	U	2292	ug/Kg	77.0	46	124			
2-CHLORONAPHTHALENE		50155	U	2094.7	ug/Kg	70.0	41	114			
2-CHLOROPHENOL		50120	U	2132.8	ug/Kg	71.0	34	121			
2-METHYLNAPHTHALENE		50060	U	2073.3	ug/Kg	70.0	38	122			
2-METHYLPHENOL		50145	U	2081	ug/Kg	70.0	32	122			
2-NITROANILINE		50205	U	2294	ug/Kg	77.0	44	127			
2-NITROPHENOL		50190	U	2129.2	ug/Kg	71.0	36	123			
3- & 4-METHYLPHENOL		50125	U	2122.7	ug/Kg	71.0	22	121			
3,3-DICHLOROBENZIDINE		50332.5	U	2346	ug/Kg	78.0	34	119			
3-NITROANILINE		50080	U	2273	ug/Kg	76.0	33	119			
4,6-DINITRO-2-METHYLPH	ENOL	50250	U	1185	ug/Kg	40.0	29	132			
4-BROMOPHENYL PHENY	ETHER	50110	U	2496.7	ug/Kg	84.0	46	124			
4-CHLORO-3-METHYLPHE	NOL	50040	U	2307.3	ug/Kg	77.0	45	122			
4-CHLOROANILINE		50215	U	1800.5	ug/Kg	60.0	17	106			
4-CHLOROPHENYL PHENY	L ETHER	50235	U	2281.7	ug/Kg	76.0	45	121			
4-NITROANILINE		50055	U	2390	ug/Kg	80.0	35	115			
4-NITROPHENOL		50120	U	2256	ug/Kg	76.0	30	132			
ACENAPHTHENE		50120	U	2187	ug/Kg	73.0	40	123			
ACENAPHTHYLENE		50035	U	2175.7	ug/Kg	73.0	32	132			
ANILINE		50110	U	1803	ug/Kg	60.0	13	104			
ANTHRACENE		50105	U	2560.5	ug/Kg	86.0	47	123			
AZOBENZENE		50145	U	2312	ug/Kg	77.0	39	125			
BENZO(A)ANTHRACENE		50180	U	2535.4	ug/Kg	85.0	49	126			
BENZO(A)PYRENE		50150	U	2564.6	ug/Kg	86.0	45	129			
BENZO(B)FLUORANTHENE	=	50250	U	2393.1	ug/Kg	80.0	45	132			
BENZO(G,H,I)PERYLENE		50075	U	2400.8	ug/Kg	80.0	43	134			
BENZO(K)FLUORANTHENE	.	50225	U	2505.7	ug/Kg	84.0	47	132			
BENZOIC ACID		80064	U	2515	ug/Kg	53.0	11	148			
BENZYL ALCOHOL		50145	U	2105.4	ug/Kg	70.0	29	122			
BIS(2-CHLOROETHOXY)MI	ETHANE	50210	U	2023.8	ug/Kg	68.0	36	121			
BIS(2-CHLOROETHYL) ETH		50195	U	2024.4	ug/Kg	68.0	31	120			
BIS(2-CHLOROISOPROPYI		50170	U	2061.3	ug/Kg	69.0	33	131			
BIS(2-ETHYLHEXYL) PHTH	•	50095	U	2615.2	ug/Kg	88.0	51	133			
BUTYL BENZYL PHTHALA		50050	U	2528.9	ug/Kg	85.0	48	132			

L77358-2212121622 Page 12 of 55

ACZ Project ID: L77358

CHRYSENE	50145	U	2492	ug/Kg	83.0	50	124
DIBENZO(A,H)ANTHRACENE	50040	U	2483	ug/Kg	83.0	50	124
DIBENZOFURAN	50100	U	2265.6	ug/Kg	76.0	48	124
DIETHYLPHTHALATE	50055	U	2244.2	ug/Kg	75.0	51	128
DIMETHYL PHTHALATE	50190	U	2394.9	ug/Kg	80.0	45	140
DI-N-BUTYL PHTHALATE	50115	U	2546.2	ug/Kg	85.0	45	134
DI-N-OCTYL PHTHALATE	50110	U	2682.5	ug/Kg	90.0	44	120
FLUORANTHENE	50065	U	2595	ug/Kg	87.0	50	127
FLUORENE	50115	U	2371.6	ug/Kg	79.0	43	125
HEXACHLOROBENZENE	50235	U	2269.2	ug/Kg	76.0	45	122
HEXACHLOROBUTADIENE	50260	U	2022	ug/Kg	68.0	32	123
HEXACHLOROCYCLOPENTADIENE	50195	U	771.9	ug/Kg	26.0	14	96
HEXACHLOROETHANE	50170	U	2007.1	ug/Kg	67.0	28	117
INDENO(1,2,3-CD)PYRENE	50075	U	2422.9	ug/Kg	81.0	45	133
ISOPHORONE	50045	U	2006	ug/Kg	67.0	30	122
NAPHTHALENE	50220	U	2087.6	ug/Kg	70.0	36	120
NITROBENZENE	50230	U	2143.5	ug/Kg	72.0	38	127
N-NITROSODIMETHYLAMINE	50400	U	1972	ug/Kg	66.0	34	122
N-NITROSODI-N-PROPYLAMINE	50215	U	2028	ug/Kg	68.0	35	123
N-NITROSODIPHENYLAMINE	50075	U	2396.7	ug/Kg	80.0	23	120
PENTACHLOROPHENOL	50160	U	2333	ug/Kg	78.0	25	133
PHENANTHRENE	50210	U	2418.7	ug/Kg	81.0	50	121
PHENOL	50065	U	2150.1	ug/Kg	72.0	34	121
PYRENE	50110	U	2698	ug/Kg	90.0	47	127
2,4,6-TRIBROMOPHENOL (surr)				%	85.6	39	132
2-FLUOROBIPHENYL (surr)				%	69.1	44	115
2-FLUOROPHENOL (surr)				%	76.4	35	115
NITROBENZENE-D5 (surr)				%	71.1	37	122
PHENOL-D6 (surr)				%	73.1	70	130
TERPHENYL-D14 (surr)				%	78.5	54	127

MSD	Sample ID: L77358-01MSD				31-	Anal	yzed:	ed: 12/07/22 13		
Compound	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,2,4-TRICHLOROBENZE	NE 50220	U	2114.1	ug/Kg	67.0	34	118	3	20	
1,2-DICHLOROBENZENE	50210	U	2078.1	ug/Kg	66.0	33	117	2	20	
1,3-DICHLOROBENZENE	50265	U	2042.2	ug/Kg	64.0	30	115	3	20	
1,4-DICHLOROBENZENE	50045	U	2068.7	ug/Kg	66.0	31	115	2	20	
2,4,5-TRICHLOROPHENC	L 50025	U	2682	ug/Kg	85.0	41	124	9	20	
2,4,6-TRICHLOROPHENC	L 50085	U	2492.8	ug/Kg	79.0	39	126	6	20	
2,4-DICHLOROPHENOL	50150	U	2470.1	ug/Kg	78.0	40	122	4	20	
2,4-DIMETHYLPHENOL	50105	U	2322	ug/Kg	74.0	30	127	3	20	
2,4-DINITROPHENOL	50155	U	U	ug/Kg	0.0	15	130	0	20	M2
2,4-DINITROTOLUENE	50220	U	2677.4	ug/Kg	85.0	48	126	10	20	
2,6-DINITROTOLUENE	50135	U	2522	ug/Kg	80.0	46	124	10	20	
2-CHLORONAPHTHALEN	E 50155	U	2216.1	ug/Kg	70.0	41	114	6	20	
2-CHLOROPHENOL	50120	U	2236.9	ug/Kg	71.0	34	121	5	20	
2-METHYLNAPHTHALENI	50060	U	2167.6	ug/Kg	69.0	38	122	4	20	
2-METHYLPHENOL	50145	U	2201.6	ug/Kg	70.0	32	122	6	20	
2-NITROANILINE	50205	U	2517	ug/Kg	80.0	44	127	9	20	

L77358-2212121622 Page 13 of 55

ACZ Project ID: L77358

2-NITROPHENOL	50190	U	2257.7	ug/Kg	71.0	36	123	6	20	
3- & 4-METHYLPHENOL	50125	U	2231.9	ug/Kg	71.0	22	121	5	20	
3,3-DICHLOROBENZIDINE	50332.5	U	2400	ug/Kg	76.0	34	119	2	20	
3-NITROANILINE	50080	U	2430	ug/Kg	77.0	33	119	7	20	
4,6-DINITRO-2-METHYLPHENOL	50250	U	1370	ug/Kg	43.0	29	132	14	20	
4-BROMOPHENYL PHENYL ETHER	50110	U	2819.8	ug/Kg	89.0	46	124	12	20	
4-CHLORO-3-METHYLPHENOL	50040	U	2463.1	ug/Kg	78.0	45	122	7	20	
4-CHLOROANILINE	50215	U	1702	ug/Kg	54.0	17	106	6	20	
4-CHLOROPHENYL PHENYL ETHER	50235	U	2466.9	ug/Kg	78.0	45	121	8	20	
4-NITROANILINE	50055	U	2609	ug/Kg	83.0	35	115	9	20	
4-NITROPHENOL	50120	U	2428	ug/Kg	77.0	30	132	7	20	
ACENAPHTHENE	50120	U	2325.1	ug/Kg	74.0	40	123	6	20	
ACENAPHTHYLENE	50035	U	2326.4	ug/Kg	74.0	32	132	7	20	
ANILINE	50110	U	1627	ug/Kg	52.0	13	104	10	20	
ANTHRACENE	50105	U	2862	ug/Kg	91.0	47	123	11	20	
AZOBENZENE	50145	U	2515	ug/Kg	80.0	39	125	8	20	
BENZO(A)ANTHRACENE	50180	U	2795.2	ug/Kg	88.0	49	126	10	20	
BENZO(A)PYRENE	50150	U	2874	ug/Kg	91.0	45	129	11	20	
BENZO(B)FLUORANTHENE	50250	U	2665.4	ug/Kg	84.0	45	132	11	20	
BENZO(G,H,I)PERYLENE	50075	U	2662.9	ug/Kg	84.0	43	134	10	20	
BENZO(K)FLUORANTHENE	50225	U	2785.8	ug/Kg	88.0	47	132	11	20	
BENZOIC ACID	80064	U	3023	ug/Kg	60.0	11	148	18	20	
BENZYL ALCOHOL	50145	U	2205.4	ug/Kg	70.0	29	122	5	20	
BIS(2-CHLOROETHOXY)METHANE	50210	U	2166.4	ug/Kg	68.0	36	121	7	20	
BIS(2-CHLOROETHYL) ETHER	50195	U	2085.1	ug/Kg	66.0	31	120	3	20	
BIS(2-CHLOROISOPROPYL) ETHER	50170	U	2121	ug/Kg	67.0	33	131	3	20	
BIS(2-ETHYLHEXYL) PHTHALATE	50095	U	2880.3	ug/Kg	91.0	51	133	10	20	
BUTYL BENZYL PHTHALATE	50050	U	2849.4	ug/Kg	90.0	48	132	12	20	
CHRYSENE	50145	U	2751.7	ug/Kg	87.0	50	124	10	20	
DIBENZO(A,H)ANTHRACENE	50040	U	2758	ug/Kg	87.0	50	124	10	20	
DIBENZOFURAN	50100	U	2399.5	ug/Kg	76.0	48	124	6	20	
DIETHYLPHTHALATE	50055	U	2492.8	ug/Kg	79.0	51	128	10	20	
DIMETHYL PHTHALATE	50190	U	2618.1	ug/Kg	83.0	45	140	9	20	
DI-N-BUTYL PHTHALATE	50115	U	2850	ug/Kg	90.0	45	134	11	20	
DI-N-OCTYL PHTHALATE	50110	U	3006.9	ug/Kg ug/Kg	95.0	44	120	11	20	
FLUORANTHENE	50065	U	2862	ug/Kg	91.0	50	127	10	20	
FLUORENE	50115	U	2555.1	ug/Kg ug/Kg	81.0	43	125	7	20	
HEXACHLOROBENZENE	50235	U	2553.1	ug/Kg ug/Kg	81.0	45 45	122	, 12	20	
HEXACHLOROBUTADIENE	50260	U	2110.9	ug/Kg ug/Kg	67.0	32	123	4	20	
HEXACHLOROCYCLOPENTADIENE	50195	U	1116.6		35.0	32 14	96	37	20	
HEXACHLOROETHANE	50195	U	2070.6	ug/Kg	65.0	28	117	3	20	
				ug/Kg		45				
INDENO(1,2,3-CD)PYRENE	50075	U	2678	ug/Kg	85.0		133	10	20	
ISOPHORONE NARRITHALENE	50045	U	2133	ug/Kg	68.0	30	122	6	20	
NAPHTHALENE	50220	U	2141.1	ug/Kg	68.0	36	120	3	20	
NITROBENZENE NI NITROSODIMETUVI AMINE	50230	U	2227.5	ug/Kg	70.0	38	127	4	20	
N-NITROSODIMETHYLAMINE	50400	U	2017	ug/Kg	64.0	34	122	2	20	
N-NITROSODI-N-PROPYLAMINE	50215	U	2112.2	ug/Kg	67.0	35	123	4	20	
N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL	50075 50160	U U	2621.3 2694	ug/Kg ug/Kg	83.0 85.0	23 25	120 133	9 14	20 20	

L77358-2212121622 Page 14 of 55

ACZ Project ID: L77358

NOTE: If the Rec% column is null, the high/l limits are in % Rec.	ow limits are in the	same ur	its as the r	esult. If ti	he Rec% (column is	not null,	then th	ne high/low
PHENANTHRENE	50210	U	2705.7	ug/Kg	86.0	50	121	11	20
PHENOL	50065	U	2240.7	ug/Kg	71.0	34	121	4	20
PYRENE	50110	U	2992.4	ug/Kg	95.0	47	127	10	20
2,4,6-TRIBROMOPHENOL (surr)				%	91.4	39	132		
2-FLUOROBIPHENYL (surr)				%	69.3	44	115		
2-FLUOROPHENOL (surr)				%	74.1	35	115		
NITROBENZENE-D5 (surr)				%	69.8	37	122		
PHENOL-D6 (surr)				%	72.3	70	130		
TERPHENYL-D14 (surr)				%	81.6	54	127		

LCSS	Sample ID:	WG555578LCSS		PCN/S0	N: OPM	BNA2210	31-	Analy	/zed:	12/07	/22 11:39
Compound	-	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,2,4-TRICHLOROBEN	ZENE	50220		1294.3	ug/Kg	78.0	34	118			
1,2-DICHLOROBENZEN	NE	50210		1271.4	ug/Kg	76.0	33	117			
1,3-DICHLOROBENZEN	NE	50265		1248.9	ug/Kg	75.0	30	115			
1,4-DICHLOROBENZEN	NE	50045		1269.4	ug/Kg	77.0	31	115			
2,4,5-TRICHLOROPHE	NOL	50025		1535	ug/Kg	93.0	41	124			
2,4,6-TRICHLOROPHE	NOL	50085		1467.1	ug/Kg	88.0	39	126			
2,4-DICHLOROPHENO	L	50150		1493.5	ug/Kg	90.0	40	122			
2,4-DIMETHYLPHENOL	-	50105		1433	ug/Kg	86.0	30	127			
2,4-DINITROPHENOL		50155		977	ug/Kg	59.0	15	130			
2,4-DINITROTOLUENE		50220		1540.2	ug/Kg	93.0	48	126			
2,6-DINITROTOLUENE		50135		1459	ug/Kg	88.0	46	124			
2-CHLORONAPHTHAL	ENE	50155		1347.2	ug/Kg	81.0	41	114			
2-CHLOROPHENOL		50120		1372.1	ug/Kg	83.0	34	121			
2-METHYLNAPHTHALE	ENE	50060		1324.7	ug/Kg	80.0	38	122			
2-METHYLPHENOL		50145		1349.6	ug/Kg	81.0	32	122			
2-NITROANILINE		50205		1414	ug/Kg	85.0	44	127			
2-NITROPHENOL		50190		1328.4	ug/Kg	80.0	36	123			
3- & 4-METHYLPHENO	L	50125		1370.7	ug/Kg	83.0	22	121			
3,3-DICHLOROBENZID	INE	50332.5		1168	ug/Kg	70.0	34	119			
3-NITROANILINE		50080		1260	ug/Kg	76.0	33	119			
4,6-DINITRO-2-METHY	PHENOL	50250		1241	ug/Kg	75.0	29	132			
4-BROMOPHENYL PHE	NYL ETHER	50110		1561.1	ug/Kg	94.0	46	124			
4-CHLORO-3-METHYLE	PHENOL	50040		1437.6	ug/Kg	87.0	45	122			
4-CHLOROANILINE		50215		873.9	ug/Kg	53.0	17	106			
4-CHLOROPHENYL PH	ENYL ETHER	50235		1454.8	ug/Kg	87.0	45	121			
4-NITROANILINE		50055		1435	ug/Kg	87.0	35	115			
4-NITROPHENOL		50120		1377	ug/Kg	83.0	30	132			
ACENAPHTHENE		50120		1403.2	ug/Kg	85.0	40	123			
ACENAPHTHYLENE		50035		1411.8	ug/Kg	85.0	32	132			
ANILINE		50110		894	ug/Kg	54.0	13	104			
ANTHRACENE		50105		1656.7	ug/Kg	100.0	47	123			
AZOBENZENE		50145		1474	ug/Kg	89.0	39	125			
BENZO(A)ANTHRACEN	NE	50180		1587.6	ug/Kg	96.0	49	126			
BENZO(A)PYRENE		50150		1640.8	ug/Kg	99.0	45	129			
BENZO(B)FLUORANTH	IENE	50250		1527.6	ug/Kg	92.0	45	132			
BENZO(G,H,I)PERYLEN	NE	50075		1551.1	ug/Kg	94.0	43	134			
BENZO(K)FLUORANTH		50225		1628.3	ug/Kg	98.0	47	132			

L77358-2212121622 Page 15 of 55

PYRENE

2,4,6-TRIBROMOPHENOL (surr)

2-FLUOROBIPHENYL (surr)

2-FLUOROPHENOL (surr)

NITROBENZENE-D5 (surr)

TERPHENYL-D14 (surr)

PHENOL-D6 (surr)

ACZ Project ID: L77358

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec. BENZOIC ACID 80064 1324 50.0 11 148 ua/Ka BENZYL ALCOHOL 50145 1325.1 ug/Kg 80.0 29 122 BIS(2-CHLOROETHOXY)METHANE 36 50210 79.0 121 1316.8 ug/Kg BIS(2-CHLOROETHYL) ETHER 50195 1284.3 ug/Kg 77.0 31 120 BIS(2-CHLOROISOPROPYL) ETHER 50170 1301.9 ug/Kg 78.0 33 131 BIS(2-ETHYLHEXYL) PHTHALATE 50095 133 1589.5 ug/Kg 96.0 51 **BUTYL BENZYL PHTHALATE** 50050 1521.4 ug/Kg 92.0 48 132 CHRYSENE 50145 1562.4 ug/Kg 94.0 50 124 DIBENZO(A,H)ANTHRACENE 50040 1594.5 ug/Kg 96.0 50 124 **DIBENZOFURAN** 50100 1446.2 ug/Kg 87.0 48 124 DIETHYLPHTHALATE 85.0 50055 1405.8 51 128 ug/Kg DIMETHYL PHTHALATE 50190 1531.3 ug/Kg 92.0 45 140 **DI-N-BUTYL PHTHALATE** 50115 1540.9 ug/Kg 93.0 45 134 DI-N-OCTYL PHTHALATE 50110 97 0 44 120 1605.1 ug/Kg **FLUORANTHENE** 50065 50 127 1624 ug/Kg 98.0 **FLUORENE** 50115 1501.2 ug/Kg 90.0 43 125 **HEXACHLOROBENZENE** 50235 1498 5 ug/Kg 90.0 45 122 **HEXACHLOROBUTADIENE** 50260 1284.7 32 123 ug/Kg 77.0 **HEXACHLOROCYCLOPENTADIENE** 50195 1263.8 ug/Kg 76.0 14 96 ug/Kg **HEXACHLOROETHANE** 50170 1255.2 76.0 28 117 INDENO(1,2,3-CD)PYRENE 50075 1552.1 ug/Kg 94.0 45 133 ISOPHORONE 50045 30 122 1244.3 ug/Kg 75.0 NAPHTHALENE 50220 1318.8 ug/Kg 79.0 36 120 **NITROBENZENE** 50230 1373.4 ug/Kg 83.0 38 127 N-NITROSODIMETHYLAMINE 50400 1208 ug/Kg 72.0 34 122 N-NITROSODI-N-PROPYLAMINE 50215 35 123 1274.1 ug/Kg 77.0 N-NITROSODIPHENYLAMINE 50075 23 120 1506.5 ug/Kg 91.0 PENTACHLOROPHENOL 50160 ug/Kg 25 133 1764 106.0 PHENANTHRENE 50210 1548.5 93.0 50 121 ug/Kg **PHENOL** 50065 1365.1 121

50110

LCSSD	Sample ID: WG555578LC	Sample ID: WG555578LCSSD			BNA2210	31-	Analy	/zed:	12/07/22 12:12		
Compound	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual	
1,2,4-TRICHLOROBENZEN	E 50220		1250.7	ug/Kg	75.0	34	118	3	20		
1,2-DICHLOROBENZENE	50210		1262.7	ug/Kg	76.0	33	117	1	20		
1,3-DICHLOROBENZENE	50265		1247.4	ug/Kg	75.0	30	115	0	20		
1,4-DICHLOROBENZENE	50045		1253.1	ug/Kg	76.0	31	115	1	20		
2,4,5-TRICHLOROPHENOL	50025		1406	ug/Kg	85.0	41	124	9	20		
2,4,6-TRICHLOROPHENOL	50085		1347.5	ug/Kg	81.0	39	126	8	20		
2,4-DICHLOROPHENOL	50150		1368.3	ug/Kg	82.0	40	122	9	20		
2,4-DIMETHYLPHENOL	50105		1323	ug/Kg	80.0	30	127	8	20		
2,4-DINITROPHENOL	50155		1019	ug/Kg	61.0	15	130	4	20		

82.0

103.0

97.1

80.0

87.5

81.2

84 0

ug/Kg

ug/Kg

%

%

%

%

%

1702.1

34

47

39

44

35

37

70

54

127

132

115

115

122

130

127

L77358-2212121622 Page 16 of 55

ACZ Project ID: L77358

2,4-DINITROTOLUENE	50220	1471	ug/Kg	88.0	48	126	5	20
2,6-DINITROTOLUENE	50135	1379	ug/Kg	83.0	46	124	6	20
2-CHLORONAPHTHALENE	50155	1250.4	ug/Kg	75.0	41	114	7	20
2-CHLOROPHENOL	50120	1325.6	ug/Kg	80.0	34	121	3	20
2-METHYLNAPHTHALENE	50060	1250.7	ug/Kg	75.0	38	122	6	20
2-METHYLPHENOL	50145	1275.9	ug/Kg	77.0	32	122	6	20
2-NITROANILINE	50205	1361	ug/Kg	82.0	44	127	4	20
2-NITROPHENOL	50190	1308.4	ug/Kg	79.0	36	123	2	20
3- & 4-METHYLPHENOL	50125	1279.9	ug/Kg	77.0	22	121	7	20
3,3-DICHLOROBENZIDINE	50332.5	1057	ug/Kg	63.0	34	119	10	20
B-NITROANILINE	50080	1206	ug/Kg	73.0	33	119	4	20
4,6-DINITRO-2-METHYLPHENOL	50250	1253	ug/Kg	75.0	29	132	1	20
4-BROMOPHENYL PHENYL ETHER	50110	1406.1	ug/Kg	85.0	46	124	10	20
4-CHLORO-3-METHYLPHENOL	50040	1328.6	ug/Kg	80.0	45	122	8	20
4-CHLOROANILINE	50215	842.3	ug/Kg	51.0	17	106	4	20
I-CHLOROPHENYL PHENYL ETHER	50235	1367.3	ug/Kg	82.0	45	121	6	20
4-NITROANILINE	50055	1389	ug/Kg	84.0	35	115	3	20
1-NITROPHENOL	50120	1327	ug/Kg	80.0	30	132	4	20
ACENAPHTHENE	50120	1304.7	ug/Kg	79.0	40	123	7	20
ACENAPHTHYLENE	50035	1307.4	ug/Kg	79.0	32	132	8	20
ANILINE	50110	874	ug/Kg	53.0	13	104	2	20
ANTHRACENE	50105	1547.2	ug/Kg	93.0	47	123	7	20
AZOBENZENE	50145	1390	ug/Kg	84.0	39	125	6	20
BENZO(A)ANTHRACENE	50180	1492.9	ug/Kg	90.0	49	126	6	20
BENZO(A)PYRENE	50150	1543.6	ug/Kg	93.0	45	129	6	20
BENZO(B)FLUORANTHENE	50250	1430.9	ug/Kg	86.0	45	132	7	20
BENZO(G,H,I)PERYLENE	50075	1442.2	ug/Kg	87.0	43	134	7	20
BENZO(K)FLUORANTHENE	50225	1539.9	ug/Kg	93.0	47	132	6	20
BENZOIC ACID	80064	1389	ug/Kg	52.0	11	148	5	20
BENZYL ALCOHOL	50145	1282.2	ug/Kg	77.0	29	122	3	20
BIS(2-CHLOROETHOXY)METHANE	50210	1236.8	ug/Kg	74.0	36	121	6	20
BIS(2-CHLOROETHYL) ETHER	50195	1244.8	ug/Kg	75.0	31	120	3	20
BIS(2-CHLOROISOPROPYL) ETHER	50170	1265.7	ug/Kg	76.0	33	131	3	20
BIS(2-ETHYLHEXYL) PHTHALATE	50095	1484.6	ug/Kg	89.0	51	133	7	20
BUTYL BENZYL PHTHALATE	50050	1424.6	ug/Kg	86.0	48	132	7	20
CHRYSENE	50145	1462.1	ug/Kg	88.0	50	124	7	20
DIBENZO(A,H)ANTHRACENE	50040	1489.6	ug/Kg	90.0	50	124	7	20
DIBENZOFURAN	50100	1343.2	ug/Kg	81.0	48	124	7	20
DIETHYLPHTHALATE	50055	1325.6	ug/Kg	80.0	51	128	6	20
DIMETHYL PHTHALATE	50190	1447.5	ug/Kg	87.0	45	140	6	20
DI-N-BUTYL PHTHALATE	50115	1481.9	ug/Kg	89.0	45	134	4	20
DI-N-OCTYL PHTHALATE	50110	1529	ug/Kg	92.0	44	120	5	20
FLUORANTHENE	50065	1550.2	ug/Kg	93.0	50	127	5	20
FLUORENE	50115	1411.1	ug/Kg	85.0	43	125	6	20
HEXACHLOROBENZENE	50235	1385.2	ug/Kg	83.0	45	122	8	20
HEXACHLOROBUTADIENE	50260	1235.5	ug/Kg	74.0	32	123	4	20
HEXACHLOROCYCLOPENTADIENE	50195	1037.8	ug/Kg	62.0	14	96	20	20
HEXACHLOROETHANE	50170	1240.5	ug/Kg	75.0	28	117	1	20

L77358-2212121622 Page 17 of 55

ACZ Project ID: L77358

If the Rec% column is null, the high/	low limits are in the sam	e units as the r	esult. If t	he Rec% (column is	not null,	then ti	he high
re in % Rec. SOPHORONE	50045	1196.1	ua/Ka	72.0	30	122	4	20
			ug/Kg					
NAPHTHALENE	50220	1266	ug/Kg	76.0	36	120	4	20
NITROBENZENE	50230	1345.8	ug/Kg	81.0	38	127	2	20
I-NITROSODIMETHYLAMINE	50400	1238	ug/Kg	74.0	34	122	2	20
N-NITROSODI-N-PROPYLAMINE	50215	1232.9	ug/Kg	74.0	35	123	3	20
N-NITROSODIPHENYLAMINE	50075	1426.3	ug/Kg	86.0	23	120	5	20
PENTACHLOROPHENOL	50160	1702	ug/Kg	102.0	25	133	4	20
PHENANTHRENE	50210	1478.6	ug/Kg	89.0	50	121	5	20
PHENOL	50065	1321	ug/Kg	80.0	34	121	3	20
PYRENE	50110	1608.5	ug/Kg	97.0	47	127	6	20
2,4,6-TRIBROMOPHENOL (surr)			%	91.3	39	132		
2-FLUOROBIPHENYL (surr)			%	74.6	44	115		
2-FLUOROPHENOL (surr)			%	85.0	35	115		
NITROBENZENE-D5 (surr)			%	78.6	37	122		
PHENOL-D6 (surr)			%	80.7	70	130		
FERPHENYL-D14 (surr)			%	82.9	54	127		

PBS	Sample ID:	WG555578PBS						Analy	/zed:	12/07	/22 11:06
Compound		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,2,4-TRICHLOROBENZ	ENE			U	ug/Kg		-332	332			
1,2-DICHLOROBENZEN	E			U	ug/Kg		-332	332			
1,3-DICHLOROBENZEN	E			U	ug/Kg		-332	332			
1,4-DICHLOROBENZEN	E			U	ug/Kg		-332	332			
2,4,5-TRICHLOROPHEN	IOL			U	ug/Kg		-1660	1660			
2,4,6-TRICHLOROPHEN	IOL			U	ug/Kg		-332	332			
2,4-DICHLOROPHENOL				U	ug/Kg		-332	332			
2,4-DIMETHYLPHENOL				U	ug/Kg		-664	664			
2,4-DINITROPHENOL				U	ug/Kg		-1660	1660			
2,4-DINITROTOLUENE				U	ug/Kg		-332	332			
2,6-DINITROTOLUENE				U	ug/Kg		-1660	1660			
2-CHLORONAPHTHALE	NE			U	ug/Kg		-332	332			
2-CHLOROPHENOL				U	ug/Kg		-332	332			
2-METHYLNAPHTHALE	NE			U	ug/Kg		-332	332			
2-METHYLPHENOL				U	ug/Kg		-332	332			
2-NITROANILINE				U	ug/Kg		-1660	1660			
2-NITROPHENOL				U	ug/Kg		-664	664			
3- & 4-METHYLPHENOL	•			U	ug/Kg		-664	664			
3,3-DICHLOROBENZIDI	NE			U	ug/Kg		-1660	1660			
3-NITROANILINE				U	ug/Kg		-1660	1660			
4,6-DINITRO-2-METHYL	PHENOL			U	ug/Kg		-1660	1660			
4-BROMOPHENYL PHE	NYL ETHER			U	ug/Kg		-332	332			
4-CHLORO-3-METHYLP	HENOL			U	ug/Kg		-332	332			
4-CHLOROANILINE				U	ug/Kg		-332	332			
4-CHLOROPHENYL PH	ENYL ETHER			U	ug/Kg		-332	332			
4-NITROANILINE				U	ug/Kg		-1660	1660			
4-NITROPHENOL				U	ug/Kg		-1660	1660			
ACENAPHTHENE				U	ug/Kg		-332	332			
ACENAPHTHYLENE				U	ug/Kg		-332	332			
ANILINE				U	ug/Kg		-1660	1660			

L77358-2212121622 Page 18 of 55

ACZ Project ID: L77358

ANTHRACENE	U	ug/Kg		-332	332
AZOBENZENE	U	ug/Kg		-1660	1660
BENZO(A)ANTHRACENE	U	ug/Kg		-332	332
BENZO(A)PYRENE	U	ug/Kg		-332	332
BENZO(B)FLUORANTHENE	U	ug/Kg		-332	332
BENZO(G,H,I)PERYLENE	U	ug/Kg		-332	332
BENZO(K)FLUORANTHENE	U	ug/Kg		-332	332
BENZOIC ACID	U	ug/Kg		-1660	1660
BENZYL ALCOHOL	U	ug/Kg		-332	332
BIS(2-CHLOROETHOXY)METHANE	U	ug/Kg		-332	332
BIS(2-CHLOROETHYL) ETHER	U	ug/Kg		-332	332
BIS(2-CHLOROISOPROPYL) ETHER	U	ug/Kg		-332	332
BIS(2-ETHYLHEXYL) PHTHALATE	U	ug/Kg		-664	664
BUTYL BENZYL PHTHALATE	U	ug/Kg		-332	332
CHRYSENE	U	ug/Kg		-332	332
DIBENZO(A,H)ANTHRACENE	U	ug/Kg		-332	332
DIBENZOFURAN	U	ug/Kg		-332	332
DIETHYLPHTHALATE	U	ug/Kg		-332	332
DIMETHYL PHTHALATE	U	ug/Kg		-332	332
DI-N-BUTYL PHTHALATE	U	ug/Kg		-332	332
DI-N-OCTYL PHTHALATE	U	ug/Kg		-332	332
FLUORANTHENE	U	ug/Kg		-332	332
FLUORENE	U	ug/Kg		-332	332
HEXACHLOROBENZENE	U	ug/Kg		-332	332
HEXACHLOROBUTADIENE	U	ug/Kg		-332	332
HEXACHLOROCYCLOPENTADIENE	U	ug/Kg		-332	332
HEXACHLOROETHANE	U	ug/Kg		-332	332
NDENO(1,2,3-CD)PYRENE	U	ug/Kg		-332	332
SOPHORONE	U	ug/Kg		-332	332
NAPHTHALENE	U	ug/Kg		-332	332
NITROBENZENE	U	ug/Kg		-332	332
N-NITROSODIMETHYLAMINE	U	ug/Kg		-1660	1660
N-NITROSODI-N-PROPYLAMINE	U	ug/Kg		-332	332
N-NITROSODIPHENYLAMINE	U	ug/Kg		-332	332
PENTACHLOROPHENOL	U	ug/Kg		-1660	1660
PHENANTHRENE	U	ug/Kg		-332	332
PHENOL	U	ug/Kg		-664	664
PYRENE	U	ug/Kg		-332	332
2,4,6-TRIBROMOPHENOL (surr)		%	81.1	39	132
2-FLUOROBIPHENYL (surr)		%	79.6	44	115
2-FLUOROPHENOL (surr)		%	83.1	35	115
NITROBENZENE-D5 (surr)		%	73.1	37	122
PHENOL-D6 (surr)		%	79.2	70	130

L77358-2212121622 Page 19 of 55

ACZ Project ID: L77358

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Volatile Organics by GC/MS

M8260C/D GC/MS

WG555698

DUP	Sample ID: L77	358-01DUP						Anal	/zed:	11/29	/22 16:
Compound		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,1,1,2-TETRACHL	OROETHANE		U	U	ug/Kg				0	20	
1,1,1-TRICHLOROE	ETHANE		U	U	ug/Kg				0	20	I
1,1,2,2-TETRACHL	OROETHANE		U	U	ug/Kg				0	20	I
1,1,2-TRICHLOROE	ETHANE		U	U	ug/Kg				0	20	1
1,1-DICHLOROETH	IANE		U	U	ug/Kg				0	20	
1,1-DICHLOROETH	IENE		U	U	ug/Kg				0	20	
1,1-DICHLOROPRO	PENE		U	U	ug/Kg				0	20	
1,2,3-TRICHLOROE	BENZENE		U	U	ug/Kg				0	20	
1,2,3-TRICHLOROF	PROPANE		U	U	ug/Kg				0	20	
1,2,4-TRICHLOROE	BENZENE		U	U	ug/Kg				0	20	
1,2,4-TRIMETHYLE	ENZENE		U	U	ug/Kg				0	20	
1,2-DIBROMO-3-CH	HLOROPROPANE		U	U	ug/Kg				0	20	
1,2-DIBROMOETH	ANE		U	U	ug/Kg				0	20	
1,2-DICHLOROBEN	IZENE		U	U	ug/Kg				0	20	
1,2-DICHLOROETH	IANE		U	U	ug/Kg				0	20	
1,2-DICHLOROPRO	PANE		U	U	ug/Kg				0	20	
1,3,5-TRIMETHYLE	ENZENE		U	U	ug/Kg				0	20	
1,3-DICHLOROBEN	IZENE		U	U	ug/Kg				0	20	
1,3-DICHLOROPRO	PANE		U	U	ug/Kg				0	20	
1,4-DICHLOROBEN	IZENE		U	U	ug/Kg				0	20	
2,2-DICHLOROPRO	PANE		U	U	ug/Kg				0	20	
2-BUTANONE			U	U	ug/Kg				0	20	
2-CHLOROETHYL	VINYL ETHER		U	U	ug/Kg				0	20	
2-CHLOROTOLUEI	NE		U	U	ug/Kg				0	20	
2-HEXANONE			U	U	ug/Kg				0	20	
4-CHLOROTOLUEI	NE		U	U	ug/Kg				0	20	
4-ISOPROPYLTOL	UENE		U	U	ug/Kg				0	20	
4-METHYL-2-PENT	ANONE		U	U	ug/Kg				0	20	
ACETONE			U	U	ug/Kg				0	20	
ACRYLONITRILE			U	U	ug/Kg				0	20	
BENZENE			U	U	ug/Kg				0	20	
BROMOBENZENE			U	U	ug/Kg				0	20	
BROMOCHLOROM	ETHANE		U	U	ug/Kg				0	20	
BROMODICHLORO			U	U	ug/Kg				0	20	
BROMOFORM			U	U	ug/Kg				0	20	
BROMOMETHANE			U	U	ug/Kg				0	20	
CARBON DISULFIE	DE		U	U	ug/Kg				0	20	
CARBON TETRAC	HLORIDE		U	U	ug/Kg				0	20	
CHLOROBENZENE			U	U	ug/Kg				0	20	
CHLOROETHANE			U	U	ug/Kg				0	20	
CHLOROFORM			U	U	ug/Kg				0	20	
CHLOROMETHANI			U	U	ug/Kg				0	20	
CIS-1,2-DICHLORO			U	U	ug/Kg				0	20	
,	PROPENE		U	U	ug/Kg				0	20	

L77358-2212121622 Page 20 of 55

ACZ Project ID: L77358

NOTE: If the Rec% column is null, the high/low limits are limits are in % Rec.	in the same units	s as the	result. If ti	he Rec% co	olumn is no	ot null, t	hen th	e high/lo	ow .
DIBROMOCHLOROMETHANE	U	U	ug/Kg				0	20	RA
DIBROMOMETHANE	U	U	ug/Kg				0	20	RA
DICHLORODIFLUOROMETHANE	U	U	ug/Kg				0	20	RA
ETHYLBENZENE	U	U	ug/Kg				0	20	RA
HEXACHLOROBUTADIENE	U	U	ug/Kg				0	20	RA
ISOPROPYLBENZENE	U	U	ug/Kg				0	20	RA
M P XYLENE	U	U	ug/Kg				0	20	RA
METHYL TERT BUTYL ETHER	U	U	ug/Kg				0	20	RA
METHYLENE CHLORIDE	U	U	ug/Kg				0	20	RA
NAPHTHALENE	U	U	ug/Kg				0	20	RA
N-BUTYLBENZENE	U	U	ug/Kg				0	20	RA
N-PROPYLBENZENE	U	U	ug/Kg				0	20	RA
O XYLENE	U	U	ug/Kg				0	20	RA
SEC-BUTYLBENZENE	U	U	ug/Kg				0	20	RA
STYRENE	U	U	ug/Kg				0	20	RA
TERT-BUTYLBENZENE	U	U	ug/Kg				0	20	RA
TETRACHLOROETHENE	U	U	ug/Kg				0	20	RA
TOLUENE	U	U	ug/Kg				0	20	RA
TRANS-1,2-DICHLOROETHENE	U	U	ug/Kg				0	20	RA
TRANS-1,3-DICHLOROPROPENE	U	U	ug/Kg				0	20	RA
TRICHLOROETHENE	U	U	ug/Kg				0	20	RA
TRICHLOROFLUOROMETHANE	U	U	ug/Kg				0	20	RA
VINYL ACETATE	U	U	ug/Kg				0	20	RA
VINYL CHLORIDE	U	U	ug/Kg				0	20	RA
BROMOFLUOROBENZENE (surr)			%	98.3	70	130			
DIBROMOFLUOROMETHANE (surr)			%	97.1	70	130			
TOLUENE-D8 (surr)			%	99.5	70	130			

MS	Sample ID:	L77358-02MS		PCN/S	CN: V221	128-1-CC	V	Anal	yzed:	11/29	/22 17:08
Compound		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
2-CHLOROETHYL VINYL E	THER	100.2	U	492.4	ug/L	98.0	70	130			
1,1,1,2-TETRACHLOROETH	HANE	100.3	U	508.3	ug/Kg	101.0	70	130			
1,1,1-TRICHLOROETHANE		100	U	540	ug/Kg	108.0	70	130			
1,1,2,2-TETRACHLOROETH	HANE	100.1	U	485.3	ug/Kg	97.0	70	130			
1,1,2-TRICHLOROETHANE		100.1	U	490.6	ug/Kg	98.0	70	130			
1,1-DICHLOROETHANE		99.9	U	546.9	ug/Kg	109.0	70	130			
1,1-DICHLOROETHENE		100.1	U	549.1	ug/Kg	110.0	70	130			
1,1-DICHLOROPROPENE		100.2	U	516.3	ug/Kg	103.0	70	130			
1,2,3-TRICHLOROBENZEN	E	100.1	U	349.2	ug/Kg	70.0	70	130			
1,2,3-TRICHLOROPROPAN	E	100.2	U	477.2	ug/Kg	95.0	70	130			
1,2,4-TRICHLOROBENZEN	E	100.2	U	357.3	ug/Kg	71.0	70	130			
1,2,4-TRIMETHYLBENZENE		100.2	U	466.4	ug/Kg	93.0	70	130			
1,2-DIBROMO-3-CHLOROP	ROPANE	100	U	452	ug/Kg	90.0	70	130			
1,2-DIBROMOETHANE		100	U	484.6	ug/Kg	97.0	70	130			
1,2-DICHLOROBENZENE		100.3	U	448.1	ug/Kg	89.0	70	130			
1,2-DICHLOROETHANE		100.1	U	515.2	ug/Kg	103.0	70	130			
1,2-DICHLOROPROPANE		99.8	U	513.8	ug/Kg	103.0	70	130			
1,3,5-TRIMETHYLBENZENE		100	U	476.3	ug/Kg	95.0	70	130			
1,3-DICHLOROBENZENE		100.4	U	445.2	ug/Kg	89.0	70	130			

L77358-2212121622 Page 21 of 55

ACZ Project ID: L77358

1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2,2-DICHLOROPROPANE 2-BUTANONE	100.2	U	494.1	ug/Kg	99.0	70		
2,2-DICHLOROPROPANE	101.5	U	440.3	ug/Kg	87.0	70	130 130	
	99.6	U	537.1	ug/Kg	108.0	70	130	
	199.7	U	782	ug/Kg	78.0	70	130	
2-CHLOROTOLUENE	100.7	U	481.6	ug/Kg	96.0	70	130	
2-HEXANONE	200.6	U	802	ug/Kg	80.0	70	130	
4-CHLOROTOLUENE	100.8	U	472.4	ug/Kg	94.0	70	130	
4-ISOPROPYLTOLUENE	100.0	U	443.2	ug/Kg	89.0	70	130	
4-METHYL-2-PENTANONE	198.8	U	917	ug/Kg ug/Kg	92.0	70	130	
ACETONE	198.6	U	839	ug/Kg	84.0	70	130	
ACRYLONITRILE	100	U	476.6	ug/Kg	95.0	70	130	
BENZENE	100.2	U	530.6		106.0	70	130	
BROMOBENZENE	100.2	U	486.5	ug/Kg	97.0	70	130	
BROMOCHLOROMETHANE	100.4	U	521.4	ug/Kg	104.0	70	130	
				ug/Kg				
BROMODICHLOROMETHANE BROMOFORM	100.1	U	518.8	ug/Kg	104.0	70 70	130	
BROMOFORM BROMOMETHANE	100 101.1	U	436.7 550.8	ug/Kg	87.0 109.0	70 70	130 130	
				ug/Kg			130	
CARBON TETRACIII ODIDE	100.4	U	527.4	ug/Kg	105.0	70 70		
CARBON TETRACHLORIDE	100.3	U	536	ug/Kg	107.0	70 70	130	
CHLOROBENZENE	100.4	U	494.1	ug/Kg	98.0	70	130	
CHLOROETHANE	100	U	547.1	ug/Kg	109.0	70	130	
CHLOROFORM	100.2	U	535.8	ug/Kg	107.0	70	130	
CHLOROMETHANE	101.9	U	549	ug/Kg	108.0	70	130	
CIS-1,2-DICHLOROETHENE	100.2	U	538.5	ug/Kg	107.0	70	130	
CIS-1,3-DICHLOROPROPENE	100	U 	506.9	ug/Kg	101.0	70	130	
DIBROMOCHLOROMETHANE	99.8	U	508.7	ug/Kg	102.0	70	130	
DIBROMOMETHANE	100.6	U	488.8	ug/Kg	97.0	70	130	
DICHLORODIFLUOROMETHANE	98	U 	518	ug/Kg	106.0	70	130	
ETHYLBENZENE	100.1	U 	493.3	ug/Kg	99.0	70	130	
HEXACHLOROBUTADIENE	101	U 	338	ug/Kg	67.0	70	130	
SOPROPYLBENZENE	99.9	U	474	ug/Kg	95.0	70	130	
M P XYLENE	200.3	U 	982	ug/Kg	98.0	70	130	
METHYL TERT BUTYL ETHER	100.1	U	479.5	ug/Kg	96.0	70	130	
METHYLENE CHLORIDE	100.5	U 	523.1	ug/Kg	104.0	70	130	
NAPHTHALENE	100	U	367.1	ug/Kg	73.0	70	130	
N-BUTYLBENZENE	100	U	417.7	ug/Kg	84.0	70	130	
N-PROPYLBENZENE	99.9	U	470.4	ug/Kg	94.0	70	130	
O XYLENE	100.1	U	489.9	ug/Kg	98.0	70	130	
SEC-BUTYLBENZENE	100.5	U	450.8	ug/Kg	90.0	70	130	
STYRENE	100.1	U	488.7	ug/Kg	98.0	70	130	
FERT-BUTYLBENZENE	100	U	470.2	ug/Kg	94.0	70	130	
TETRACHLOROETHENE	100.2	U	476.6	ug/Kg	95.0	70	130	
FOLUENE	100.1	U 	513.4	ug/Kg	103.0	70	130	
FRANS-1,2-DICHLOROETHENE	100.2	U	546.5	ug/Kg	109.0	70	130	
FRANS-1,3-DICHLOROPROPENE	100.2	U	507.9	ug/Kg	101.0	70	130	
FRICHLOROETHENE	99.9	U	502.5	ug/Kg	101.0	70	130	
TRICHLOROFLUOROMETHANE VINYL ACETATE	100.5 100.2	U U	537.4 323.4	ug/Kg ug/Kg	107.0 65.0	70 70	130 130	

L77358-2212121622 Page 22 of 55

ACZ Project ID: L77358

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

 BROMOFLUOROBENZENE (surr)
 %
 99.3
 70
 130

 DIBROMOFLUOROMETHANE (surr)
 %
 100.7
 70
 130

 TOLUENE-D8 (surr)
 %
 100.1
 70
 130

LCSS	Sample ID: \	WG555698LCSS		PCN/S	CN: V221	128-1-CC	V	Analyzed:	11/29/22 11:5
Compound		QC	Sample	Found	Units	Rec%	Lower	Upper RPD	Limit Qual
1,1,1,2-TETRACHLC	ROETHANE	100.3		109	ug/Kg	109.0	70	130	
1,1,1-TRICHLOROE	THANE	100		109	ug/Kg	109.0	70	130	
1,1,2,2-TETRACHLO	PROETHANE	100.1		104	ug/Kg	104.0	70	130	
1,1,2-TRICHLOROE	THANE	100.1		105.3	ug/Kg	105.0	70	130	
1,1-DICHLOROETH	ANE	99.9		106.6	ug/Kg	107.0	70	130	
1,1-DICHLOROETHE	ENE	100.1		108.1	ug/Kg	108.0	70	130	
1,1-DICHLOROPRO	PENE	100.2		106.9	ug/Kg	107.0	70	130	
1,2,3-TRICHLOROB	ENZENE	100.1		95.6	ug/Kg	96.0	70	130	
1,2,3-TRICHLOROP	ROPANE	100.2		102.1	ug/Kg	102.0	70	130	
1,2,4-TRICHLOROB	ENZENE	100.2		96.5	ug/Kg	96.0	70	130	
1,2,4-TRIMETHYLBE	ENZENE	100.2		103.3	ug/Kg	103.0	70	130	
1,2-DIBROMO-3-CH	LOROPROPANE	100		102.7	ug/Kg	103.0	70	130	
1,2-DIBROMOETHA	NE	100		104.7	ug/Kg	105.0	70	130	
1,2-DICHLOROBEN	ZENE	100.3		100.7	ug/Kg	100.0	70	130	
1,2-DICHLOROETH	ANE	100.1		105.3	ug/Kg	105.0	70	130	
1,2-DICHLOROPRO	PANE	99.8		107.1	ug/Kg	107.0	70	130	
1,3,5-TRIMETHYLBE	ENZENE	100		103.1	ug/Kg	103.0	70	130	
1,3-DICHLOROBEN	ZENE	100.4		102	ug/Kg	102.0	70	130	
1,3-DICHLOROPRO	PANE	100.2		104.6	ug/Kg	104.0	70	130	
1,4-DICHLOROBEN	ZENE	101.5		101.5	ug/Kg	100.0	70	130	
2,2-DICHLOROPRO	PANE	99.6		109.3	ug/Kg	110.0	70	130	
2-BUTANONE		199.7		179	ug/Kg	90.0	70	130	
2-CHLOROETHYL V	INYL ETHER	100.2		107.3	ug/Kg	107.0	70	130	
2-CHLOROTOLUEN	E	100.7		103.4	ug/Kg	103.0	70	130	
2-HEXANONE		200.6		185	ug/Kg	92.0	70	130	
4-CHLOROTOLUEN	E	100.8		102	ug/Kg	101.0	70	130	
4-ISOPROPYLTOLU	ENE	100.1		102.4	ug/Kg	102.0	70	130	
4-METHYL-2-PENTA	NONE	198.8		207	ug/Kg	104.0	70	130	
ACETONE		198.6		184	ug/Kg	93.0	70	130	
ACRYLONITRILE		100		101.3	ug/Kg	101.0	70	130	
BENZENE		100.2		106.1	ug/Kg	106.0	70	130	
BROMOBENZENE		100		103.5	ug/Kg	104.0	70	130	
BROMOCHLOROME	THANE	100.4		106	ug/Kg	106.0	70	130	
BROMODICHLOROI	METHANE	100.1		110.1	ug/Kg	110.0	70	130	
BROMOFORM		100		100.2	ug/Kg	100.0	70	130	
BROMOMETHANE		101.1		109.6	ug/Kg	108.0	70	130	
CARBON DISULFIDI	E	100.4		108.6	ug/Kg	108.0	70	130	
CARBON TETRACH	LORIDE	100.3		110	ug/Kg	110.0	70	130	
CHLOROBENZENE		100.4		104.2	ug/Kg	104.0	70	130	
CHLOROETHANE		100		105.7	ug/Kg	106.0	70	130	
CHLOROFORM		100.2		106.7	ug/Kg	107.0	70	130	
CHLOROMETHANE		101.9		109.6	ug/Kg	108.0	70	130	
CIS-1,2-DICHLOROE		100.2		106.7	ug/Kg	106.0	70	130	

L77358-2212121622 Page 23 of 55

ACZ Project ID: L77358

IS-1,3-DICHLOROPROPENE	100	109.1	ug/Kg	109.0	70	130
IBROMOCHLOROMETHANE	99.8	109.7	ug/Kg	110.0	70	130
IBROMOMETHANE	100.6	105.1	ug/Kg	104.0	70	130
ICHLORODIFLUOROMETHANE	98	96.9	ug/Kg	99.0	70	130
THYLBENZENE	100.1	105.2	ug/Kg	105.0	70	130
EXACHLOROBUTADIENE	101	100.7	ug/Kg	100.0	70	130
SOPROPYLBENZENE	99.9	103.9	ug/Kg	104.0	70	130
I P XYLENE	200.3	209	ug/Kg	104.0	70	130
ETHYL TERT BUTYL ETHER	100.1	100.5	ug/Kg	100.0	70	130
ETHYLENE CHLORIDE	100.5	103.9	ug/Kg	103.0	70	130
APHTHALENE	100	93.2	ug/Kg	93.0	70	130
-BUTYLBENZENE	100	100.1	ug/Kg	100.0	70	130
I-PROPYLBENZENE	99.9	102.6	ug/Kg	103.0	70	130
XYLENE	100.1	105.1	ug/Kg	105.0	70	130
EC-BUTYLBENZENE	100.5	102.8	ug/Kg	102.0	70	130
TYRENE	100.1	106.2	ug/Kg	106.0	70	130
ERT-BUTYLBENZENE	100	103	ug/Kg	103.0	70	130
ETRACHLOROETHENE	100.2	104.9	ug/Kg	105.0	70	130
OLUENE	100.1	106.4	ug/Kg	106.0	70	130
RANS-1,2-DICHLOROETHENE	100.2	107.1	ug/Kg	107.0	70	130
RANS-1,3-DICHLOROPROPENE	100.2	109.3	ug/Kg	109.0	70	130
RICHLOROETHENE	99.9	106.1	ug/Kg	106.0	70	130
RICHLOROFLUOROMETHANE	100.5	106.9	ug/Kg	106.0	70	130
INYL ACETATE	100.2	114.5	ug/Kg	114.0	70	130
INYL CHLORIDE	98.2	111.9	ug/Kg	114.0	70	130
ROMOFLUOROBENZENE (surr)			%	100.1	70	130
IBROMOFLUOROMETHANE (surr)			%	99.8	70	130
OLUENE-D8 (surr)			%	99.6	70	130
,1,1,2-TETRACHLOROETHANE	100.3	107.1	ug/Kg	107.0	70	130
,1,1-TRICHLOROETHANE	100	112	ug/Kg	112.0	70	130
,1,2,2-TETRACHLOROETHANE	100.1	102.1	ug/Kg	102.0	70	130
,1,2-TRICHLOROETHANE	100.1	102.5	ug/Kg	102.0	70	130
,1-DICHLOROETHANE	99.9	112.6	ug/Kg	113.0	70	130
,1-DICHLOROETHENE	100.1	112.3	ug/Kg	112.0	70	130
,1-DICHLOROPROPENE	100.2	109.8	ug/Kg	110.0	70	130
,2,3-TRICHLOROBENZENE	100.1	96.3	ug/Kg	96.0	70	130
,2,3-TRICHLOROPROPANE	100.2	100	ug/Kg	100.0	70	130
,2,4-TRICHLOROBENZENE	100.2	98.4	ug/Kg	98.0	70	130
,2,4-TRIMETHYLBENZENE	100.2	104.5	ug/Kg	104.0	70	130
,2-DIBROMO-3-CHLOROPROPANE	100	102.9	ug/Kg	103.0	70	130
,2-DIBROMOETHANE	100	102.4	ug/Kg	102.0	70	130
,2-DICHLOROBENZENE	100.3	100.9	ug/Kg	101.0	70	130
,2-DICHLOROETHANE	100.1	109.1	ug/Kg	109.0	70	130
,2-DICHLOROPROPANE	99.8	107.5	ug/Kg	108.0	70	130
,3,5-TRIMETHYLBENZENE	100	105.3	ug/Kg	105.0	70	130
,3-DICHLOROBENZENE	100.4	102.8	ug/Kg	102.0	70	130
,3-DICHLOROPROPANE	100.2	103.2	ug/Kg	103.0	70	130
,4-DICHLOROBENZENE	101.5	101.6	ug/Kg	100.0	70	130

L77358-2212121622 Page 24 of 55

ACZ Project ID: L77358

BUTANONE	199.7	178	ug/Kg	89.0	70	130
-CHLOROETHYL VINYL ETHER	100.2	105.4	ug/Kg	105.0	70	130
-CHLOROTOLUENE	100.7	105.3	ug/Kg	105.0	70	130
-HEXANONE	200.6	179	ug/Kg	89.0	70	130
-CHLOROTOLUENE	100.8	104.2	ug/Kg	103.0	70	130
ISOPROPYLTOLUENE	100.1	103	ug/Kg	103.0	70	130
-METHYL-2-PENTANONE	198.8	202	ug/Kg	102.0	70	130
CETONE	198.6	186	ug/Kg	94.0	70	130
CRYLONITRILE	100	102.7	ug/Kg	103.0	70	130
ENZENE	100.2	109.9	ug/Kg	110.0	70	130
ROMOBENZENE	100	104.5	ug/Kg	105.0	70	130
ROMOCHLOROMETHANE	100.4	109.3	ug/Kg	109.0	70	130
ROMODICHLOROMETHANE	100.1	110.3	ug/Kg	110.0	70	130
ROMOFORM	100	97.8	ug/Kg	98.0	70	130
ROMOMETHANE	101.1	110.9	ug/Kg	110.0	70	130
ARBON DISULFIDE	100.4	110.5	ug/Kg	110.0	70	130
ARBON TETRACHLORIDE	100.3	111	ug/Kg	111.0	70	130
HLOROBENZENE	100.4	104.7	ug/Kg	104.0	70	130
CHLOROETHANE	100	110.1	ug/Kg	110.0	70	130
CHLOROFORM	100.2	111.5	ug/Kg	111.0	70	130
CHLOROMETHANE	101.9	113.7	ug/Kg	112.0	70	130
SIS-1,2-DICHLOROETHENE	100.2	111.3	ug/Kg	111.0	70	130
SIS-1,3-DICHLOROPROPENE	100	108.3	ug/Kg	108.0	70	130
NIBROMOCHLOROMETHANE	99.8	107.7	ug/Kg	108.0	70	130
IBROMOMETHANE	100.6	104.9	ug/Kg	104.0	70	130
DICHLORODIFLUOROMETHANE	98	103	ug/Kg	105.0	70	130
THYLBENZENE	100.1	107.1	ug/Kg	107.0	70	130
IEXACHLOROBUTADIENE	101	97.6	ug/Kg	97.0	70	130
SOPROPYLBENZENE	99.9	106.9	ug/Kg	107.0	70	130
I P XYLENE	200.3	213	ug/Kg	106.0	70	130
METHYL TERT BUTYL ETHER	100.1	103	ug/Kg	103.0	70	130
METHYLENE CHLORIDE	100.5	108.1	ug/Kg	108.0	70	130
IAPHTHALENE	100	91.1	ug/Kg	91.0	70	130
I-BUTYLBENZENE	100	101.3	ug/Kg	101.0	70	130
I-PROPYLBENZENE	99.9	105.6	ug/Kg	106.0	70	130
XYLENE	100.1	107	ug/Kg	107.0	70	130
EC-BUTYLBENZENE	100.5	103.9	ug/Kg	103.0	70	130
TYRENE	100.1	107.1	ug/Kg	107.0	70	130
ERT-BUTYLBENZENE	100	104.7	ug/Kg	105.0	70	130
ETRACHLOROETHENE	100.2	105.5	ug/Kg	105.0	70	130
OLUENE	100.1	107.3	ug/Kg	107.0	70	130
RANS-1,2-DICHLOROETHENE	100.2	112.7	ug/Kg	112.0	70	130
RANS-1,3-DICHLOROPROPENE	100.2	108.5	ug/Kg	108.0	70	130
RICHLOROETHENE	99.9	107.5	ug/Kg	108.0	70	130
RICHLOROFLUOROMETHANE	100.5	110.2	ug/Kg	110.0	70	130
INYL ACETATE	100.2	114.3	ug/Kg	114.0	70	130
INYL CHLORIDE	98.2	122.4	ug/Kg	125.0	70	130
ROMOFLUOROBENZENE (surr)			%	101.1	70	130

L77358-2212121622 Page 25 of 55

ACZ Project ID: L77358

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

TOLUENE-D8 (surr) % 100.1 70 130

LCSSD	Sample ID:	WG555698LCS	SD	PCN/S	CN: V221	128-1-CC	V	Analy	/zed:	11/29	/22 12:1
Compound		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
1,1,1,2-TETRACHLORO	ETHANE	100.3		102.1	ug/Kg	102.0	70	130	7	20	
1,1,1-TRICHLOROETHA	NE	100		100	ug/Kg	100.0	70	130	9	20	
1,1,2,2-TETRACHLORO	ETHANE	100.1		99.2	ug/Kg	99.0	70	130	5	20	
1,1,2-TRICHLOROETHA	NE	100.1		100.1	ug/Kg	100.0	70	130	5	20	
1,1-DICHLOROETHANE		99.9		99.6	ug/Kg	100.0	70	130	7	20	
1,1-DICHLOROETHENE		100.1		98.3	ug/Kg	98.0	70	130	9	20	
1,1-DICHLOROPROPEN	IE	100.2		98.6	ug/Kg	98.0	70	130	8	20	
1,2,3-TRICHLOROBENZ	ENE	100.1		92.5	ug/Kg	92.0	70	130	3	20	
1,2,3-TRICHLOROPROF	PANE	100.2		98.4	ug/Kg	98.0	70	130	4	20	
1,2,4-TRICHLOROBENZ	ENE	100.2		93.8	ug/Kg	94.0	70	130	3	20	
1,2,4-TRIMETHYLBENZI	ENE	100.2		97.1	ug/Kg	97.0	70	130	6	20	
1,2-DIBROMO-3-CHLOR	ROPROPANE	100		99.7	ug/Kg	100.0	70	130	3	20	
1,2-DIBROMOETHANE		100		100.3	ug/Kg	100.0	70	130	4	20	
1,2-DICHLOROBENZEN	E	100.3		97.1	ug/Kg	97.0	70	130	4	20	
1,2-DICHLOROETHANE		100.1		99.6	ug/Kg	100.0	70	130	6	20	
1,2-DICHLOROPROPAN		99.8		100.5	ug/Kg	101.0	70	130	6	20	
1,3,5-TRIMETHYLBENZI		100		98	ug/Kg	98.0	70	130	5	20	
1,3-DICHLOROBENZEN		100.4		97.1	ug/Kg	97.0	70	130	5	20	
1,3-DICHLOROPROPAN		100.2		99.9	ug/Kg	100.0	70	130	5	20	
1,4-DICHLOROBENZEN		101.5		97.3	ug/Kg	96.0	70	130	4	20	
2,2-DICHLOROPROPAN		99.6		101.3	ug/Kg ug/Kg	102.0	70	130	8	20	
2-BUTANONE	•-	199.7		173	ug/Kg	87.0	70	130	3	20	
2-CHLOROETHYL VINY	I ETHER	100.2		102.3	ug/Kg ug/Kg	102.0	70	130	5	20	
2-CHLOROTOLUENE	L LITILIX	100.7		97.7	ug/Kg ug/Kg	97.0	70	130	6	20	
2-HEXANONE		200.6		180	ug/Kg	90.0	70	130	3	20	
4-CHLOROTOLUENE		100.8		96.8	ug/Kg ug/Kg	96.0	70	130	5	20	
4-CHEOROTOLOLNE 4-ISOPROPYLTOLUENE	=	100.1		96.9		97.0	70 70	130	6	20	
4-130PROPTETOLOENE 4-METHYL-2-PENTANO		198.8		197	ug/Kg	99.0	70 70	130	5	20	
	INE				ug/Kg						
ACETONE		198.6		178	ug/Kg	90.0	70 70	130	3	20	
ACRYLONITRILE		100		97.9	ug/Kg	98.0	70 70	130	3	20	
BENZENE		100.2		99.4	ug/Kg	99.0	70	130	7	20	
BROMOBENZENE		100		98.3	ug/Kg	98.0	70	130	5	20	
BROMOCHLOROMETH		100.4		99.8	ug/Kg	99.0	70	130	6	20	
BROMODICHLOROMET	HANE	100.1		103.8	ug/Kg	104.0	70	130	6	20	
BROMOFORM		100		96.4	ug/Kg	96.0	70	130	4	20	
BROMOMETHANE		101.1		100.7	ug/Kg	100.0	70	130	8	20	
CARBON DISULFIDE		100.4		98.1	ug/Kg	98.0	70	130	10	20	
CARBON TETRACHLOF	RIDE	100.3		102	ug/Kg	102.0	70	130	8	20	
CHLOROBENZENE		100.4		98.6	ug/Kg	98.0	70	130	6	20	
CHLOROETHANE		100		98.5	ug/Kg	99.0	70	130	7	20	
CHLOROFORM		100.2		100	ug/Kg	100.0	70	130	6	20	
CHLOROMETHANE		101.9		97.6	ug/Kg	96.0	70	130	12	20	
CIS-1,2-DICHLOROETH	ENE	100.2		99.7	ug/Kg	100.0	70	130	7	20	
CIS-1,3-DICHLOROPRO	PENE	100		102.4	ug/Kg	102.0	70	130	6	20	
DIBROMOCHLOROMET	HANE	99.8		104.3	ug/Kg	105.0	70	130	5	20	

L77358-2212121622 Page 26 of 55

ACZ Project ID: L77358

DIBROMOMETHANE	100.6	100.3	ug/Kg	100.0	70	130	5	20
DICHLORODIFLUOROMETHANE	98	91.9	ug/Kg	94.0	70	130	5	20
ETHYLBENZENE	100.1	98.6	ug/Kg	99.0	70	130	6	20
HEXACHLOROBUTADIENE	101	97.4	ug/Kg	96.0	70	130	3	20
ISOPROPYLBENZENE	99.9	98.6	ug/Kg	99.0	70	130	5	20
M P XYLENE	200.3	197	ug/Kg	98.0	70	130	6	20
METHYL TERT BUTYL ETHER	100.1	99.9	ug/Kg	100.0	70	130	1	20
METHYLENE CHLORIDE	100.5	96.8	ug/Kg	96.0	70	130	7	20
NAPHTHALENE	100	93.4	ug/Kg	93.0	70	130	0	20
N-BUTYLBENZENE	100	94.9	ug/Kg	95.0	70	130	5	20
N-PROPYLBENZENE	99.9	97.7	ug/Kg	98.0	70	130	5	20
O XYLENE	100.1	98.7	ug/Kg	99.0	70	130	6	20
SEC-BUTYLBENZENE	100.5	98.4	ug/Kg	98.0	70	130	4	20
STYRENE	100.1	101.3	ug/Kg	101.0	70	130	5	20
TERT-BUTYLBENZENE	100	97.7	ug/Kg	98.0	70	130	5	20
TETRACHLOROETHENE	100.2	97.7	ug/Kg	98.0	70	130	7	20
TOLUENE	100.1	99.3	ug/Kg	99.0	70	130	7	20
TRANS-1,2-DICHLOROETHENE	100.2	98	ug/Kg	98.0	70	130	9	20
TRANS-1,3-DICHLOROPROPENE	100.2	103.3	ug/Kg	103.0	70	130	6	20
TRICHLOROETHENE	99.9	98.8	ug/Kg	99.0	70	130	7	20
TRICHLOROFLUOROMETHANE	100.5	97.7	ug/Kg	97.0	70	130	9	20
VINYL ACETATE	100.2	103.9	ug/Kg	104.0	70	130	10	20
VINYL CHLORIDE	98.2	100.2	ug/Kg	102.0	70	130	11	20
BROMOFLUOROBENZENE (surr)			%	100.3	70	130	•	*
DIBROMOFLUOROMETHANE (surr)			%	101.1	70	130		
TOLUENE-D8 (surr)			%	99.9	70	130		
1,1,1,2-TETRACHLOROETHANE	100.3	104.9	ug/Kg	105.0	70	130	2	20
1,1,1-TRICHLOROETHANE	100	105	ug/Kg	105.0	70	130	6	20
1,1,2,2-TETRACHLOROETHANE	100.1	101.5	ug/Kg	101.0	70	130	1	20
1,1,2-TRICHLOROETHANE	100.1	102	ug/Kg	102.0	70	130	0	20
1,1-DICHLOROETHANE	99.9	105.4	ug/Kg	106.0	70	130	7	20
1,1-DICHLOROETHENE	100.1	106.1	ug/Kg	106.0	70	130	6	20
1,1-DICHLOROPROPENE	100.2	102.3	ug/Kg	102.0	70	130	7	20
1,2,3-TRICHLOROBENZENE	100.1	95.2	ug/Kg	95.0	70	130	1	20
1,2,3-TRICHLOROPROPANE	100.2	99.7	ug/Kg	100.0	70	130	0	20
1,2,4-TRICHLOROBENZENE	100.2	97.2	ug/Kg	97.0	70	130	1	20
1,2,4-TRIMETHYLBENZENE	100.2	102.7	ug/Kg	102.0	70	130	2	20
1,2-DIBROMO-3-CHLOROPROPANE	100	102.1	ug/Kg	102.0	70	130	1	20
1,2-DIBROMOETHANE	100	101.1	ug/Kg	101.0	70	130	1	20
1,2-DICHLOROBENZENE	100.3	99.9	ug/Kg	100.0	70	130	1	20
1,2-DICHLOROETHANE	100.1	103.3	ug/Kg	103.0	70	130	5	20
1,2-DICHLOROPROPANE	99.8	104.1	ug/Kg	104.0	70	130	3	20
1,3,5-TRIMETHYLBENZENE	100	103.1	ug/Kg	103.0	70	130	2	20
1,3-DICHLOROBENZENE	100.4	100.8	ug/Kg	100.0	70	130	2	20
1,3-DICHLOROPROPANE	100.2	102.4	ug/Kg	102.0	70	130	1	20
1,4-DICHLOROBENZENE	101.5	100.1	ug/Kg	99.0	70	130	1	20
2,2-DICHLOROPROPANE	99.6	108	ug/Kg	108.0	70	130	4	20
2-BUTANONE	199.7	173	ug/Kg	87.0	70	130	3	20
2-CHLOROETHYL VINYL ETHER	100.2	103.3	ug/Kg	103.0	70	130	2	20

L77358-2212121622 Page 27 of 55

ACZ Project ID: L77358

2-CHLOROTOLUENE	100.7	103.3	ug/Kg	103.0	70	130	2	20
2-HEXANONE	200.6	180	ug/Kg	90.0	70	130	1	20
4-CHLOROTOLUENE	100.8	102.3	ug/Kg ug/Kg	102.0	70	130	2	20
4-ISOPROPYLTOLUENE	100.1	101.4	ug/Kg	101.0	70	130	2	20
4-METHYL-2-PENTANONE	198.8	196	ug/Kg	99.0	70	130	3	20
ACETONE	198.6	183	ug/Kg	92.0	70	130	2	20
ACRYLONITRILE	100	98.7	ug/Kg	99.0	70	130	4	20
BENZENE	100.2	103.9	ug/Kg	104.0	70	130	6	20
BROMOBENZENE	100	101.9	ug/Kg	102.0	70	130	3	20
BROMOCHLOROMETHANE	100.4	103.3	ug/Kg	103.0	70	130	6	20
BROMODICHLOROMETHANE	100.1	106.1	ug/Kg	106.0	70	130	4	20
BROMOFORM	100	97.5	ug/Kg	98.0	70	130	0	20
BROMOMETHANE	101.1	104.8	ug/Kg	104.0	70	130	6	20
CARBON DISULFIDE	100.4	103.6	ug/Kg	103.0	70	130	6	20
CARBON TETRACHLORIDE	100.3	105	ug/Kg	105.0	70	130	6	20
CHLOROBENZENE	100.4	102.2	ug/Kg	102.0	70	130	2	20
CHLOROETHANE	100	104	ug/Kg	104.0	70	130	6	20
CHLOROFORM	100.2	104.7	ug/Kg	105.0	70	130	6	20
CHLOROMETHANE	101.9	110.3	ug/Kg	108.0	70	130	3	20
CIS-1,2-DICHLOROETHENE	100.2	105.2	ug/Kg	105.0	70	130	6	20
CIS-1,3-DICHLOROPROPENE	100	105.1	ug/Kg	105.0	70	130	3	20
DIBROMOCHLOROMETHANE	99.8	107.5	ug/Kg	108.0	70	130	0	20
DIBROMOMETHANE	100.6	101.9	ug/Kg	101.0	70	130	3	20
DICHLORODIFLUOROMETHANE	98	96.7	ug/Kg	99.0	70	130	6	20
ETHYLBENZENE	100.1	103.3	ug/Kg	103.0	70	130	4	20
HEXACHLOROBUTADIENE	101	97.8	ug/Kg	97.0	70	130	0	20
ISOPROPYLBENZENE	99.9	102.5	ug/Kg	103.0	70	130	4	20
M P XYLENE	200.3	205	ug/Kg	102.0	70	130	4	20
METHYL TERT BUTYL ETHER	100.1	100.1	ug/Kg	100.0	70	130	3	20
METHYLENE CHLORIDE	100.5	101.6	ug/Kg	101.0	70	130	6	20
NAPHTHALENE	100	94.4	ug/Kg	94.0	70	130	4	20
N-BUTYLBENZENE	100	100.5	ug/Kg	101.0	70	130	1	20
N-PROPYLBENZENE	99.9	102.9	ug/Kg	103.0	70	130	3	20
O XYLENE	100.1	102.9	ug/Kg	103.0	70	130	4	20
SEC-BUTYLBENZENE	100.5	101.7	ug/Kg	101.0	70	130	2	20
STYRENE	100.1	104.5	ug/Kg	104.0	70	130	2	20
TERT-BUTYLBENZENE	100	102	ug/Kg	102.0	70	130	3	20
TETRACHLOROETHENE	100.2	101.2	ug/Kg	101.0	70	130	4	20
TOLUENE	100.1	104.2	ug/Kg	104.0	70	130	3	20
TRANS-1,2-DICHLOROETHENE	100.2	105.9	ug/Kg	106.0	70	130	6	20
TRANS-1,3-DICHLOROPROPENE	100.2	107.6	ug/Kg	107.0	70	130	1	20
TRICHLOROETHENE	99.9	103	ug/Kg	103.0	70	130	4	20
TRICHLOROFLUOROMETHANE	100.5	102.1	ug/Kg	102.0	70	130	8	20
VINYL ACETATE	100.2	106.5	ug/Kg	106.0	70	130	7	20
VINYL CHLORIDE	98.2	116.4	ug/Kg	119.0	70	130	5	20
BROMOFLUOROBENZENE (surr)			%	101.5	70	130		
DIBROMOFLUOROMETHANE (surr)			%	99.1	70	130		
TOLUENE-D8 (surr)			%	99.4	70	130		

L77358-2212121622 Page 28 of 55

ACZ Project ID: L77358

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

-25 25 -10 10 -10 10	nits Rec%	Found	Sample	QC	Compound
-25 25 -10 10 -10 10		Found	Campio		Compound
-10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10	ug/Kg	U		HANE	1,1,1,2-TETRACHLOROE
-10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10	ug/Kg	U			1,1,1-TRICHLOROETHAI
-10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10	ug/Kg	U		HANE	1,1,2,2-TETRACHLOROE
-10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10	ug/Kg	U			1,1,2-TRICHLOROETHAI
-10 10 -10 10 -10 10 -10 10 -10 10 -10 10	ug/Kg	U			1,1-DICHLOROETHANE
-10 10 -10 10 -10 10 -10 10 -10 10	ug/Kg	U			1,1-DICHLOROETHENE
-10 10 -10 10 -10 10 -10 10	ug/Kg	U			1,1-DICHLOROPROPEN
-10 10 -10 10 -10 10	ug/Kg	U		E	1,2,3-TRICHLOROBENZI
-10 10 g -10 10	ug/Kg	U		iΕ	1,2,3-TRICHLOROPROP
-10 10	ug/Kg	U		E	1,2,4-TRICHLOROBENZI
,	ug/Kg	U		Ξ	1,2,4-TRIMETHYLBENZE
-10 10	ug/Kg	U		ROPANE	1,2-DIBROMO-3-CHLOR
-10 10	ug/Kg	U			1,2-DIBROMOETHANE
-10 10	ug/Kg	U			1,2-DICHLOROBENZENI
-10 10	ug/Kg	U			1,2-DICHLOROETHANE
-10 10	ug/Kg	U			1,2-DICHLOROPROPAN
-10 10	ug/Kg	U		<u> </u>	1,3,5-TRIMETHYLBENZE
-10 10	ug/Kg	U			1,3-DICHLOROBENZENE
	ug/Kg	U			1,3-DICHLOROPROPAN
	ug/Kg	U			1,4-DICHLOROBENZENI
	ug/Kg	U			2,2-DICHLOROPROPAN
	ug/Kg	14			2-BUTANONE
	ug/Kg	U		THER	2-CHLOROETHYL VINYL
	ug/Kg	U			2-CHLOROTOLUENE
-25 25	ug/Kg	U			2-HEXANONE
	ug/Kg	U			4-CHLOROTOLUENE
	ug/Kg	U			4-ISOPROPYLTOLUENE
	ug/Kg	U			4-METHYL-2-PENTANON
	ug/Kg	11			ACETONE
	ug/Kg	U			ACRYLONITRILE
•	ug/Kg	U			BENZENE
,	ug/Kg	U			BROMOBENZENE
•	ug/Kg	U		<u>=</u>	BROMOCHLOROMETH <i>A</i>
,	ug/Kg	U			BROMODICHLOROMETI
	ug/Kg	U			BROMOFORM
,	ug/Kg	U			BROMOMETHANE
	ug/Kg	U			CARBON DISULFIDE
	ug/Kg	U		F	CARBON TETRACHLOR
	ug/Kg	U		_	CHLOROBENZENE
,	ug/Kg ug/Kg	U			CHLOROETHANE
	ug/Kg ug/Kg	U			CHLOROFORM
		U			CHLOROMETHANE
	ug/Kg	U		=	
	ug/Kg				CIS-1,2-DICHLOROETHE
	ug/Kg	U			CIS-1,3-DICHLOROPROI
	ug/Kg	U		INE	DIBROMOCHLOROMETI
-10 10	ug/Kg	U			DIBROMOMETHANE

L77358-2212121622 Page 29 of 55

ACZ Project ID: L77358

DICHLORODIFLUOROMETHANE	U	ug/Kg		-15	15
THYLBENZENE	U	ug/Kg		-10	10
HEXACHLOROBUTADIENE	U	ug/Kg		-10	10
SOPROPYLBENZENE	U	ug/Kg		-10	10
/I P XYLENE	U	ug/Kg		-25	25
METHYL TERT BUTYL ETHER	U	ug/Kg		-10	10
METHYLENE CHLORIDE	U	ug/Kg		-10	10
IAPHTHALENE	U	ug/Kg		-10	10
N-BUTYLBENZENE	U	ug/Kg		-10	10
N-PROPYLBENZENE	U	ug/Kg		-10	10
) XYLENE	U	ug/Kg		-10	10
SEC-BUTYLBENZENE	U	ug/Kg		-10	10
STYRENE	U	ug/Kg		-10	10
FERT-BUTYLBENZENE	U	ug/Kg		-10	10
ETRACHLOROETHENE	U	ug/Kg		-10	10
OLUENE	U	ug/Kg		-10	10
FRANS-1,2-DICHLOROETHENE	U	ug/Kg		-10	10
FRANS-1,3-DICHLOROPROPENE	U	ug/Kg		-10	10
FRICHLOROETHENE	U	ug/Kg		-15	15
RICHLOROFLUOROMETHANE	U	ug/Kg		-10	10
/INYL ACETATE	U	ug/Kg		-10	10
/INYL CHLORIDE	U	ug/Kg		-10	10
BROMOFLUOROBENZENE (surr)	· ·	% %	101.7	70	130
DIBROMOFLUOROMETHANE (surr)		%	98.6	70	130
OLUENE-D8 (surr)		%	97.5	70	130
1,1,2-TETRACHLOROETHANE	U	ug/Kg	07.0	-10	10
1,1,1-TRICHLOROETHANE	U	ug/Kg		-25	25
,1,2,2-TETRACHLOROETHANE	U	ug/Kg		-10	10
1,1,2-TRICHLOROETHANE	U	ug/Kg		-10	10
,1-DICHLOROETHANE	U	ug/Kg		-10	10
,1-DICHLOROETHENE	U	ug/Kg		-10	10
1,1-DICHLOROPROPENE	U	ug/Kg		-10	10
1,2,3-TRICHLOROBENZENE	U	ug/Kg		-10	10
,2,3-TRICHLOROPROPANE	U	ug/Kg		-10	10
,2,4-TRICHLOROBENZENE	U	ug/Kg		-10	10
,2,4-TRIMETHYLBENZENE	U	ug/Kg		-10	10
,2-DIBROMO-3-CHLOROPROPANE	U	ug/Kg		-10	10
,2-DIBROMOETHANE	U	ug/Kg		-10	10
,2-DICHLOROBENZENE	U	ug/Kg		-10	10
.2-DICHLOROETHANE	U	ug/Kg		-10	10
,2-DICHLOROPROPANE	U	ug/Kg		-10	10
,3,5-TRIMETHYLBENZENE	U	ug/Kg		-10	10
,3-DICHLOROBENZENE	U	ug/Kg		-10	10
,3-DICHLOROPROPANE	U	ug/Kg		-10	10
,4-DICHLOROBENZENE	U	ug/Kg		-10	10
2,2-DICHLOROPROPANE	U	ug/Kg		-10	10
2-BUTANONE	U	ug/Kg ug/Kg		-25	25
2-CHLOROETHYL VINYL ETHER	U	ug/Kg ug/Kg		-25 -25	25
2-CHLOROTOLUENE	U	ug/Kg ug/Kg		-23 -10	10

L77358-2212121622 Page 30 of 55

ACZ Project ID: L77358

2-HEXANONE	U	ug/Kg		-25	25
I-CHLOROTOLUENE	U	ug/Kg		-10	10
1-ISOPROPYLTOLUENE	U	ug/Kg		-10	10
1-METHYL-2-PENTANONE	U	ug/Kg		-50	50
ACETONE	U	ug/Kg		-25	25
ACRYLONITRILE	U	ug/Kg		-10	10
BENZENE	U	ug/Kg		-10	10
BROMOBENZENE	U	ug/Kg		-10	10
BROMOCHLOROMETHANE	U	ug/Kg		-10	10
BROMODICHLOROMETHANE	U	ug/Kg		-10	10
BROMOFORM	4.5	ug/Kg		-10	10
BROMOMETHANE	U	ug/Kg		-10	10
CARBON DISULFIDE	U	ug/Kg		-10	10
CARBON TETRACHLORIDE	U	ug/Kg		-25	25
CHLOROBENZENE	U	ug/Kg		-10	10
CHLOROETHANE	U	ug/Kg		-10	10
CHLOROFORM	U	ug/Kg		-10	10
CHLOROMETHANE	U	ug/Kg		-10	10
CIS-1,2-DICHLOROETHENE	U	ug/Kg		-10	10
CIS-1,3-DICHLOROPROPENE	U	ug/Kg		-10	10
DIBROMOCHLOROMETHANE	U	ug/Kg		-10	10
DIBROMOMETHANE	U	ug/Kg		-10	10
DICHLORODIFLUOROMETHANE	U	ug/Kg		-15	15
ETHYLBENZENE	U	ug/Kg		-10	10
HEXACHLOROBUTADIENE	U	ug/Kg		-10	10
SOPROPYLBENZENE	U	ug/Kg		-10	10
M P XYLENE	U	ug/Kg		-25	25
METHYL TERT BUTYL ETHER	U	ug/Kg		-10	10
METHYLENE CHLORIDE	U	ug/Kg		-10	10
NAPHTHALENE	U	ug/Kg		-10	10
N-BUTYLBENZENE	U	ug/Kg		-10	10
N-PROPYLBENZENE	U	ug/Kg		-10	10
O XYLENE	U	ug/Kg		-10	10
SEC-BUTYLBENZENE	U	ug/Kg		-10	10
STYRENE	U	ug/Kg		-10	10
FERT-BUTYLBENZENE	U	ug/Kg		-10	10
TETRACHLOROETHENE	U	ug/Kg		-10	10
roluene	U	ug/Kg		-10	10
FRANS-1,2-DICHLOROETHENE	U	ug/Kg		-10	10
FRANS-1,3-DICHLOROPROPENE	U	ug/Kg		-10	10
TRICHLOROETHENE	U	ug/Kg		-15	15
FRICHLOROFLUOROMETHANE	U	ug/Kg		-10	10
/INYL ACETATE	U	ug/Kg		-10	10
/INYL CHLORIDE	U	ug/Kg		-10	10
BROMOFLUOROBENZENE (surr)		%	100.9	70	130
DIBROMOFLUOROMETHANE (surr)		%	101.7	70	130

L77358-2212121622 Page 31 of 55

ACZ Project ID: L77358

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L77358-01	WG556216	*All Compounds*	M8270D/E GC/MS	Q6	Sample was received above recommended temperature.
		1,2,4-Trichlorobenzene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		1,2-Dichlorobenzene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		1,3-Dichlorobenzene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		1,4-Dichlorobenzene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2,4,5-Trichlorophenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2,4,6-Trichlorophenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2,4-Dichlorophenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2,4-Dimethylphenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2,4-Dinitrophenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
			M8270D/E GC/MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
		2,4-Dinitrotoluene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2,6-Dinitrotoluene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2-Chloronaphthalene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2-Chlorophenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2-Methylnaphthalene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2-Methylphenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2-Nitroaniline	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		2-Nitrophenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		3- & 4-Methylphenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		3,3-Dichlorobenzidine	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		3-Nitroaniline	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		4,6-Dinitro-2-methylphenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		4-Bromophenyl phenyl ether	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		4-Chloro-3-methylphenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		4-Chloroaniline	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		4-Chlorophenyl phenyl ether	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		4-Nitroaniline	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		4-Nitrophenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		Acenaphthene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		Acenaphthylene	M8270D/E GC/MS	DK	
		Aniline	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.

REPAD.15.06.05.01

L77358-2212121622 Page 32 of 55

ACZ Project ID: L77358

ACZ ID WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
	Anthracene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Azobenzene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Benzo(a)anthracene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Benzo(a)pyrene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Benzo(b)fluoranthene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Benzo(g,h,i)perylene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Benzo(k)fluoranthene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Benzoic Acid	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Benzyl alcohol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Bis(2-chloroethoxy)methane	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Bis(2-chloroethyl) ether	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Bis(2-chloroisopropyl) ether	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Bis(2-ethylhexyl) phthalate	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Butyl benzyl phthalate	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Chrysene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Dibenzo(a,h)anthracene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Dibenzofuran	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Diethylphthalate	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Dimethyl phthalate	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Di-n-butyl phthalate	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Di-n-octyl phthalate	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Fluoranthene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Fluorene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Hexachlorobenzene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Hexachlorobutadiene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Hexachlorocyclopentadiene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		M8270D/E GC/MS		See Case Narrative.
	Hexachloroethane	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Indeno(1,2,3-cd)pyrene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Isophorone	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Naphthalene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Nitrobenzene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.

REPAD.15.06.05.01

L77358-2212121622 Page 33 of 55

Organic Extended Qualifier Report

ACZ Project ID: L77358

ID WORK	NUM PARAMETER	METHOD	QUAL	DESCRIPTION
	N-Nitrosodimethylamine	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	N-Nitrosodi-n-propylamine	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	N-Nitrosodiphenylamine	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Pentachlorophenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
		M8270D/E GC/MS	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
	Phenanthrene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Phenol	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
	Pyrene	M8270D/E GC/MS	DK	Sample mass used for extraction decreased due to high moisture content.
WG555	6698 *All Compounds*	M8260C/D GC/MS	Q6	Sample was received above recommended temperature
	1,1,1,2-Tetrachloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for dat validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descrin method 5035.
	1,1,1-Trichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for dat validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descrip method 5035.
	1,1,2,2-Tetrachloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for dat validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descr in method 5035.
	1,1,2-Trichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for dat validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	
	1,1-Dichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for dat validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descrin method 5035.
	1,1-Dichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for dat validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descrin method 5035.
	1,1-Dichloropropene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	•	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for dat validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

L77358-2212121622 Page 34 of 55

ACZ Project ID: L77358

			•
ACZID WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
	M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
1,2,3-Trichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
1,2,3-Trichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
1,2,4-Trichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
1,2,4-Trimethylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
1,2-Dibromo-3-chloropropa	ane M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
1,2-Dibromoethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
1,2-Dichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
1,2-Dichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	M8260C/D GC/MS	ZM	
1,2-Dichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

L77358-2212121622 Page 35 of 55

ACZ Project ID: L77358

				AGZ FTOJECCID. E11336
ACZ ID	WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,3,5-Trimethylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,3-Dichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,3-Dichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,4-Dichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2,2-Dichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Butanone	M8260C/D GC/MS	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
		M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Chloroethyl vinyl ether	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Chlorotoluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Hexanone	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.

REPAD.15.06.05.01

L77358-2212121622 Page 36 of 55

ACZ Project ID: L77358

ACZ ID WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	4-Chlorotoluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	4-Isopropyltoluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	4-Methyl-2-Pentanone	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Acetone	M8260C/D GC/MS	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
		M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Acrylonitrile	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Benzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromochloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described

REPAD.15.06.05.01

L77358-2212121622 Page 37 of 55

ACZ Project ID: L77358

Z ID	WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
				in method 5035.
	Bromodichloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AG does not have a closed-system purge and trap as described in method 5035.
	Bromoform	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; Al does not have a closed-system purge and trap as describin method 5035.
	Bromomethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descri in method 5035.
	Carbon Disulfide	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descr in method 5035.
	Carbon Tetrachloride	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descrin method 5035.
	Chlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descr in method 5035.
	Chloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descr in method 5035.
	Chloroform	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descr in method 5035.
	Chloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as descri

REPAD.15.06.05.01

L77358-2212121622 Page 38 of 55

ACZ Project ID: L77358

				7.02 1 10j00(15). 277000
ACZ ID WORKNUM PAR	AMETER	METHOD	QUAL	DESCRIPTION
				in method 5035.
cis-1	,2-Dichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
cis-1	,3-Dichloropropene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
Dibro	omochloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
Dibro	omomethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
Dich	lorodifluoromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
Ethyl	benzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
Hexa	achlorobutadiene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
Isopr	ropylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
m p 2	Xylene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

L77358-2212121622 Page 39 of 55

ACZ Project ID: L77358

Z ID WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	Methyl Tert Butyl Ether	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	Methylene Chloride	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	Naphthalene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
	·	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	n-Butylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	n-Propylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC2 does not have a closed-system purge and trap as describe in method 5035.
	o Xylene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	sec-Butylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC does not have a closed-system purge and trap as describe in method 5035.
	Styrene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	
		M8260C/D GC/MS	ZM	
	tert-Butylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

L77358-2212121622 Page 40 of 55

ACZ Project ID: L77358

_					7.027 10,000 12. 277000
ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Tetrachloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Toluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		trans-1,2-Dichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		trans-1,3-Dichloropropene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Trichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Trichlorofluoromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Vinyl Acetate	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Vinyl Chloride	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg ; ACZ does not have a closed-system purge and trap as described in method 5035.
L77358-02	WG556216	*All Compounds*	M8270D/E GC/MS	Q6	Sample was received above recommended temperature.

REPAD.15.06.05.01

L77358-2212121622 Page 41 of 55

ACZ Project ID: L77358

ID.	WORKNIM DARAMETER	METHOD	- CHA	DESCRIPTION
עוו.	WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
	1,2,4-Trichlorobenzene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	1,2-Dichlorobenzene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	1,3-Dichlorobenzene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	1,4-Dichlorobenzene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2,4,5-Trichlorophenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2,4,6-Trichlorophenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2,4-Dichlorophenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2,4-Dimethylphenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2,4-Dinitrophenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8270D/E GC/MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable
	2,4-Dinitrotoluene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2,6-Dinitrotoluene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2-Chloronaphthalene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2-Chlorophenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2-Methylnaphthalene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2-Methylphenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2-Nitroaniline	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	2-Nitrophenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	3- & 4-Methylphenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	3,3-Dichlorobenzidine	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	3-Nitroaniline	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	4,6-Dinitro-2-methylphenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	4-Bromophenyl phenyl ether	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	4-Chloro-3-methylphenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	4-Chloroaniline	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	4-Chlorophenyl phenyl ether	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	4-Nitroaniline	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	4-Nitrophenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Acenaphthene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Acenaphthylene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Aniline	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Anthracene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Azobenzene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Benzo(a)anthracene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Benzo(a)pyrene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Benzo(b)fluoranthene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Benzo(g,h,i)perylene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Benzo(k)fluoranthene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Benzoic Acid	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Benzyl alcohol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Bis(2-chloroethoxy)methane	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Bis(2-chloroethyl) ether	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Bis(2-chloroisopropyl) ether	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Bis(2-ethylhexyl) phthalate	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Butyl benzyl phthalate	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Chrysene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Dibenzo(a,h)anthracene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Dibenzofuran	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	Diethylphthalate	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.

REPAD.15.06.05.01

L77358-2212121622 Page 42 of 55

ACZ Project ID: L77358

' ID	WORKNIM	PARAMETER	METHOD	OUAL	DESCRIPTION
טו.	WORKNOW	PARAWETER		QUAL	DESCRIPTION
		Dimethyl phthalate	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Di-n-butyl phthalate	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Di-n-octyl phthalate	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Fluoranthene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Fluorene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Hexachlorobenzene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Hexachlorobutadiene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Hexachlorocyclopentadiene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8270D/E GC/MS	N1	See Case Narrative.
		Hexachloroethane	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Indeno(1,2,3-cd)pyrene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Isophorone	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Naphthalene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Nitrobenzene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		N-Nitrosodimethylamine	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		N-Nitrosodi-n-propylamine	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		N-Nitrosodiphenylamine	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Pentachlorophenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8270D/E GC/MS	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
		Phenanthrene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Phenol	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
		Pyrene	M8270D/E GC/MS	DD	Sample required dilution due to matrix color or odor.
	WG555698	*All Compounds*	M8260C/D GC/MS	Q6	Sample was received above recommended temperature
		1,1,1,2-Tetrachloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for dat validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; A does not have a closed-system purge and trap as described in method 5035.
		1,1,1-Trichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		, ,	M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for da validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; Adoes not have a closed-system purge and trap as descin method 5035.
		1,1,2,2-Tetrachloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for da validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	
		1,1,2-Trichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for da validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	_ '
		1,1-Dichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for dat validation because the concentration of the duplicated
					sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

L77358-2212121622 Page 43 of 55

ACZ Project ID: L77358

CZ ID	WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
				does not have a closed-system purge and trap as described in method 5035.
	1,1-Dichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,1-Dichloropropene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,2,3-Trichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,2,3-Trichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,2,4-Trichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,2,4-Trimethylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,2-Dibromo-3-chloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,2-Dibromoethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,2-Dichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ

REPAD.15.06.05.01

L77358-2212121622 Page 44 of 55

ACZ Project ID: L77358

CZ ID	WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
				does not have a closed-system purge and trap as described in method 5035 .
	1,2-Dichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,2-Dichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	1,3,5-Trimethylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	1,3-Dichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	1,3-Dichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	1,4-Dichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACi does not have a closed-system purge and trap as describe in method 5035.
	2,2-Dichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC does not have a closed-system purge and trap as describe in method 5035.
	2-Butanone	M8260C/D GC/MS	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
		M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC does not have a closed-system purge and trap as describ in method 5035.
	2-Chloroethyl vinyl ether	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data

REPAD.15.06.05.01

L77358-2212121622 Page 45 of 55

ACZ Project ID: L77358

				AGZ PTOJECTID. E17336
ACZ ID WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
				validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Chlorotoluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Hexanone	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	4-Chlorotoluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	4-Isopropyltoluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	4-Methyl-2-Pentanone	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Acetone	M8260C/D GC/MS	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
		M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Acrylonitrile	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Benzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.

REPAD.15.06.05.01

L77358-2212121622 Page 46 of 55

ACZ Project ID: L77358

ACZ ID WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
	Bromobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromochloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromodichloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromoform	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromomethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Carbon Disulfide	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Carbon Tetrachloride	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Chlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Chloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.

REPAD.15.06.05.01

L77358-2212121622 Page 47 of 55

ACZ Project ID: L77358

				AGZ FTOJECCID. E17336
ACZ ID WORKNUM	I PARAMETER	METHOD	QUAL	DESCRIPTION
	Chloroform	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Chloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	cis-1,2-Dichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	cis-1,3-Dichloropropene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Dibromochloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Dibromomethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Dichlorodifluoromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Ethylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Hexachlorobutadiene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	M2	associated control sample (LCS or LFB) was acceptable.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ

REPAD.15.06.05.01

L77358-2212121622 Page 48 of 55

ACZ Project ID: L77358

ID .	WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
				does not have a closed-system purge and trap as describe in method 5035. $$
	Isopropylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	m p Xylene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as describe in method 5035.
	Methyl Tert Butyl Ether	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC2 does not have a closed-system purge and trap as describe in method 5035.
	Methylene Chloride	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC does not have a closed-system purge and trap as describe in method 5035.
	Naphthalene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC does not have a closed-system purge and trap as describe in method 5035.
	n-Butylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC does not have a closed-system purge and trap as describ in method 5035.
	n-Propylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC does not have a closed-system purge and trap as describ in method 5035.
	o Xylene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; AC does not have a closed-system purge and trap as describ in method 5035.
	sec-Butylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	7M	Data is estimated because result is below 200 ug/Kg; AC

REPAD.15.06.05.01

L77358-2212121622 Page 49 of 55

ACZ Project ID: L77358

				AGZ PTOJECTID. 277336
ACZ ID WOI	RKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
				does not have a closed-system purge and trap as described in method 5035.
	Styrene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	tert-Butylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Tetrachloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Toluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	trans-1,2-Dichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	trans-1,3-Dichloropropene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Trichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Trichlorofluoromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Vinyl Acetate	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	M2	associated control sample (LCS or LFB) was acceptable.
		M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

L77358-2212121622 Page 50 of 55

ACZ Project ID: L77358

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Vinyl Chloride	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.

L77358-2212121622 Page 51 of 55

Certification Qualifiers

D&D Enterprises, Inc. ACZ Project ID: L77358

GC/MS

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Aniline

M8270D/E GC/MS

L77358-2212121622 Page 52 of 55

Sample Receipt

D&D Enterprises, Inc. ACZ Project ID: L77358

Date Received: 11/21/2022 13:23

Received By:

Date	Printed:	nted: 11/2	
Receipt Verification			
	YES	NO	NA
1) Is a foreign soil permit included for applicable samples?			X
2) Is the Chain of Custody form or other directive shipping papers present?	X		
3) Does this project require special handling procedures such as CLP protocol?		Χ	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses?	X		
6) Is the Chain of Custody form complete and accurate?	X		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?		Х	
Samples/Containers			
	YES	NO	NA
8) Are all containers intact and with no leaks?	X		
9) Are all labels on containers and are they intact and legible?	X		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	X		
11) For preserved bottle types, was the pH checked and within limits? 1			Х
12) Is there sufficient sample volume to perform all requested work?	X		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	X		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?		Х	
18) Were all samples received within hold time?			
	NA indica	tes Not Ap	plicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
3903	12.5	<=6.0	15	Yes

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

L77358

D&D Enterprises, Inc. ACZ Project ID:

Date Received: 11/21/2022 13:23

Received By:

Date Printed: 11/22/2022

REPAD LPII 2012-03

L77358-2212121622 Page 54 of 55

The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

77358 Chain of Custod

L77358-2212121622

Revision #: 2

White - Return with sample.

Yellow - Retain for your recordsPage 55 of 55